List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2356416/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Total protein assay by PCA-based RGB-spectrum conversion methods with smartphone-acquired digital images. Analytical Sciences, 2022, 38, 869-880.	1.6	3
2	Determination of Free MgO in Steelmaking Slags by Solvent Extraction Using 2,2,2-trichloroethanol Combined with Atomic Absorption Spectrometry. ISIJ International, 2022, 62, 922-928.	1.4	0
3	Quantitative Reduction of Iron under Nitrogen Atmosphere for Potassium Dichromate Titration. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2021, 107, .	0.4	0
4	Manipulation of aggregation-induced emission of thermoresponsive fluorescent polymers having Au(I)–S groups for a fluorescent chemosensor. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 618, 126459.	4.7	5
5	Geometrical pH mapping of Microfluids by principal-component-analysis-based xyz-spectrum conversion method. Analytica Chimica Acta, 2021, 1182, 338952.	5.4	6
6	Sulfated Steelmaking Slags as Se(IV) Adsorbents: Effects of Preparation Conditions on Adsorption Performance. ISIJ International, 2021, 61, 506-512.	1.4	4
7	Spontaneous growth of gold nanoclusters to form gold nanoparticles in the presence of high molecular weight poly(ethylene glycol). Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 585, 124113.	4.7	5
8	Dataset for reproducing absorption spectra of methyl orange from the RGB values of microscopic images. Data in Brief, 2020, 31, 105998.	1.0	9
9	Reproducing absorption spectra of pH indicators from RGB values of microscopic images. Talanta, 2020, 216, 120952.	5.5	11
10	Development of Colorimetric Analysis with Smartphones-captured Images Based on RGB-spectrum Conversion Methods. Bunseki Kagaku, 2020, 69, 693-706.	0.2	5
11	Impact of Temperature on the Fusion Growth of Bimetallic Au–Pt Nanoparticles from Each Nanocluster Conjugated with a Thermoresponsive Polymer. Crystal Growth and Design, 2019, 19, 6199-6206.	3.0	3
12	Development of Sensing Functions of Gold Nanoparticles Conjugated with Thermoresponsive Polymers. Bunseki Kagaku, 2019, 68, 289-296.	0.2	0
13	Interaction potential surface between Raman scattering enhancing nanoparticles conjugated with a functional copolymer. Physical Chemistry Chemical Physics, 2019, 21, 16889-16894.	2.8	3
14	Specific formation of hydrophobic aggregates of ionic thermoresponsive polymers with oppositely charged ionic surfactants under extremely dilute conditions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 560, 98-105.	4.7	2
15	Specific turn-on near infrared fluorescence from non-fluorescent gold nanoclusters bearing sulfhydryl oligopeptides. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 538, 14-22.	4.7	6
16	Extraction of Free Magnesia from Steelmaking Slags Using Iodine–Ethanol Solutions. ISIJ International, 2018, 58, 1474-1479.	1.4	2
17	Fabrication of thermoresponsive near-infrared fluorescent gold nanocomposites and their thermal manipulation. Sensors and Actuators B: Chemical, 2017, 247, 188-196.	7.8	7
18	Speciation of Chromium(III) and Chromium(VI) by <i>in situ</i> Extractant Formation Method and Micro Solvent Extraction Method with Hydrophilic Organic Solvent. Bunseki Kagaku, 2016, 65, 433-438.	0.2	1

#	Article	IF	CITATIONS
19	Self-induced Variation of Enantiomeric Excess in Gold Nanoparticle Assemblies Induced by Cysteine. Chemistry Letters, 2016, 45, 1093-1095.	1.3	4
20	Interaction Potential between Biological Sensing Nanoparticles Determined by Combining Small-Angle X-ray Scattering and Model-Potential-Free Liquid Theory. Journal of Physical Chemistry C, 2016, 120, 25564-25571.	3.1	5
21	Thermal-induced Immuno-nephelometry Using Gold Nanoparticles Conjugated with a Thermoresponsive Polymer for the Detection of Avidin. Analytical Sciences, 2015, 31, 495-501.	1.6	6
22	Interaction of Poly(<i>N</i> -isopropylacrylamide) with Sodium Dodecyl Sulfate below the Critical Aggregation Concentration. Langmuir, 2014, 30, 6367-6372.	3.5	10
23	Fusion Growth of Gold Nanoparticles Induced by the Conformational Change of a Thermoresponsive Polymer Studied by Distance Distribution Functions. Journal of Physical Chemistry C, 2013, 117, 13602-13608.	3.1	11
24	Release of Nile Red from Thermoresponsive Gold Nanocomposites by Heating a Solution and the Addition of Glutathione. Analytical Sciences, 2012, 28, 1125-1132.	1.6	8
25	Sensing of Sulfhydryl Compounds with Thermoresponsive Gold Nanocomposites. Bunseki Kagaku, 2012, 61, 535-545.	0.2	0
26	Thermal-induced growth of gold nanoparticles conjugated with thermoresponsive polymer without chemical reduction. Journal of Colloid and Interface Science, 2011, 359, 142-147.	9.4	6
27	Polymer-functionalized Gold Nanoparticles as Versatile Sensing Materials. Analytical Sciences, 2010, 26, 1219-1228.	1.6	62
28	Colorimetric Assay of Glutathione Based on the Spontaneous Disassembly of Aggregated Gold Nanocomposites Conjugated with Water-Soluble Polymer. Langmuir, 2010, 26, 6818-6825.	3.5	74
29	Colorimetric Assay of Aminopeptidase N Activity Based on Inhibition of the Disassembly of Gold Nano-composites Conjugated with a Thermo-responsive Copolymer. Analytical Sciences, 2009, 25, 267-273.	1.6	16
30	Speciation Analysis for Chromium(III) and Chromium(VI) after Micro Solvent Extraction with in situ Extractant Formation Method. Bunseki Kagaku, 2009, 58, 693-698.	0.2	2
31	Determination of Hydrophilic Organic Compounds in River Water by GC/MS Coupled with Solid-Phase Extraction Using Activated Carbon Cartridge. Bunseki Kagaku, 2007, 56, 1141-1146.	0.2	4
32	Speciation of Chromium (III) and Chromium (VI) in River Water by Graphite Furnace Atomic Absorption Spectrometry after Cloud Point Extraction with Ammonium Pyrrolidinedithiocarbamate. Bunseki Kagaku, 2007, 56, 737-743.	0.2	14
33	Simple and Selective Sensing of Cysteine Using Gold Nanoparticles Conjugated with a Thermoresponsive Copolymer Having Carboxyl Groups. Analytical Sciences, 2007, 23, 85-90.	1.6	27
34	Blue-to-Red Chromatic Sensor Composed of Gold Nanoparticles Conjugated with Thermoresponsive Copolymer for Thiol Sensing. Langmuir, 2007, 23, 11225-11232.	3.5	62
35	Determination of Phenol and Chlorophenols in River Water in Tochigi Prefecture by GC/MS Coupled with Solid-Phase Extraction and Derivatization. Bunseki Kagaku, 2006, 55, 721-726.	0.2	3
36	Tris(2-methyl-8-quinolinolato)iron(III) as a Novel Spectrophotometric Probe for Silanol Detection. Analytical Sciences, 2006, 22, 421-426.	1.6	1

#	Article	IF	CITATIONS
37	Tris(2-methyl-8-quinolinolato)gallium(III) as a Fluorescent Probe for Sensitive Silanol-Testing. Analytical Sciences, 2005, 21, 1099-1104.	1.6	3
38	Speciation Arsenic(III) and Arsenic(V) in Natural Water by Graphite Furnace AAS after Coprecipitation with a Copper-Pyrrolidinedithiocarbamate Complex. Bunseki Kagaku, 2005, 54, 831-836.	0.2	19
39	Fluorometric Determination of Trace Amounts of Selenium in Steel by High-Performance Liquid Chromatography with 2,3-Diaminonaphthalene. Bunseki Kagaku, 2005, 54, 959-963.	0.2	3
40	Determination of total antimony in river water by graphite furnace AAS after coprecipitation with manganese(IV) oxide. Bunseki Kagaku, 2004, 53, 1475-1479.	0.2	3
41	Determination of Zinc in Iron and Steel by Reversed-phase High-performance Liquid Chromatography with α, β, γ, δ-tetrakis(4-carboxyphenyl)porphine as a Precolumn Derivatizing Agent. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2003, 89, 914-919.	0.4	4
42	Aggregation property of thermo-sensitive copolymers having polyamino groups and carboxyl groups Bunseki Kagaku, 2002, 51, 689-695.	0.2	3
43	Influence of alkali metal salts in migration solution for capillary zone electrophoretic behavior of heavy metal chelates with carbodithioate having aza-crown ring Bunseki Kagaku, 2002, 51, 533-538.	0.2	3
44	Analytical Chemistry for Advanced Technologies. Direct determination of boron in iron and Steel by ion-pair reversed-phase HPLC with a Laboratory-packed column Bunseki Kagaku, 2001, 50, 867-872.	0.2	9
45	Determination of Trace Amounts of Boron in Steel by Reversed-phase High-Performance Liquid Chromatography with Azomethine-H as a Precolumn Derivatizaion Agent Analytical Sciences, 2001, 17, 1421-1424.	1.6	14
46	Spectrophotometric Characterization of Diazacrown Ethers Having Two Carbodithioate Groups Analytical Sciences, 2001, 17, 199-203.	1.6	9
47	Fractional determination of vanadium (IV) and vanadium (V) in water samples by graphite-furnace AAS after solvent extraction with 1-butanol and 8-mercaptoquinoline Bunseki Kagaku, 2001, 50, 133-138.	0.2	5
48	Synthesis of a thermo-sensitive copolymer with hydroxamic acid group and its characteristics of metal-ion collection Bunseki Kagaku, 2001, 50, 257-262.	0.2	9
49	Determination of cobalt in iron and steel by reversed- phase HPLC using 2-(5-bromo-2-pyridylazo)-5-[<i>N</i> - <i>n</i> -propyl- <i>N</i> -(3-sulfopropyl)amino]phenol chelate as a precolumn derivatizing reagent. Bunseki Kagaku, 2001, 50, 267-271.	0.2	5
50	Separation, Detection, and Functional Materials. Influence of alkali metal salts in an eluent for reversed phase HPLC separation of transition metal chelates with carbodithioate having an aza-crown ring Bunseki Kagaku, 1999, 48, 1141-1144.	0.2	1
51	Determination of Cobalt in Natural Water as a 2-(5-Bromo-2-pyridylazo)-5-(N-propyl-N-(3-sulfopropyl)amino)phenol Chelate by On-Line Preconcentration HPLC with Column-Switching Technique Analytical Sciences, 1998, 14, 343-347.	1.6	13
52	Selective fluorometric determination of indium(III) by high-performance liquid chromatography with 2-methyl-8-quinolinol based on a ligand-exchange reaction of silanol groups. Journal of Chromatography A, 1997, 789, 395-401.	3.7	18
53	Determination of Trace Amounts of Molybdenum in Rainwater and Snow by Graphite-Furnace Atomic Absorption Spectrometry after Solvent Extraction and Micro-Volume Back-Extraction. Analytical Sciences, 1996, 12, 953-957.	1.6	21
54	Determination of Trace Amounts of Silver in High-Purity Aluminum by Graphite-Furnace Atomic Absorption Spectrometry after Solvent Extraction and Micro-Volume Back-Extraction. Analytical Sciences, 1996, 12, 959-962.	1.6	6

#	ARTICLE	IF	CITATIONS
55	Simultaneous Determination of Trace Amounts of Metals by High-Performance Liquid Chromatography after Preconcentration with Adsorption on Chlorotrifluoroethylene Polymer as Their Hexamethylenedithiocarbamate Complexes Analytical Sciences, 1996, 12, 761-766.	1.6	12
56	Comparison of hydrazone derivatives for reversed phase high performance liquid chromatography Bunseki Kagaku, 1994, 43, 195-201.	0.2	3
57	Silanol Effect on the Chromatographic Behavior of Tris(2-methyl-8-quinolinolato)gallium in High-Performance Liquid Chromatography Analytical Sciences, 1994, 10, 31-34.	1.6	12
58	Simultaneous Determination of Copper, Iron and Nickel by High-Performance Liquid Chromatography after Preconcentration with Extraction and Back-Extraction Analytical Sciences, 1994, 10, 951-953.	1.6	3
59	Determination of Metal Ions by High-Performance Liquid Chromatographic Separation of Their Pyrrolidinedithiocarbamate Complexes after Solvent Extraction Analytical Sciences, 1993, 9, 315-317.	1.6	7
60	Separation of Metal Ions by High Performance Liquid Chromatography after Precolumn Chelation with Eriochrome Red B. Analytical Sciences, 1991, 7, 507-509.	1.6	2
61	Simultaneous Determination of Platinum(II), Rhodium(III) and Palladium(II) with 2-(5-Bromo-2-pyridylazo)-5-(N-propyl-N-sulfopropylamino)phenol by High Performance Liquid Chromatography, Analytical Sciences, 1989, 5, 111-112	1.6	16