Christian Radauer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2356355/publications.pdf

Version: 2024-02-01

98 papers 4,462 citations

126708 33 h-index 65 g-index

101 all docs

101 docs citations

times ranked

101

3767 citing authors

#	Article	IF	CITATIONS
1	A classification of plant food allergensâ ⁻ †. Journal of Allergy and Clinical Immunology, 2004, 113, 821-830.	1.5	485
2	Allergens are distributed into few protein families and possess a restricted number of biochemical functions. Journal of Allergy and Clinical Immunology, 2008, 121, 847-852.e7.	1.5	429
3	The Bet v 1 fold: an ancient, versatile scaffold for binding of large, hydrophobic ligands. BMC Evolutionary Biology, 2008, 8, 286.	3.2	237
4	Evolutionary biology of plant food allergens. Journal of Allergy and Clinical Immunology, 2007, 120, 518-525.	1.5	213
5	Pollen allergens are restricted to few protein families and show distinct patterns of species distribution. Journal of Allergy and Clinical Immunology, 2006, 117, 141-147.	1.5	194
6	Update of the <scp>WHO</scp> / <scp>IUIS A</scp> llergen <scp>N</scp> omenclature <scp>D</scp> atabase based on analysis of allergen sequences. Allergy: European Journal of Allergy and Clinical Immunology, 2014, 69, 413-419.	2.7	163
7	WHO/IUIS Allergen Nomenclature: Providing a common language. Molecular Immunology, 2018, 100, 3-13.	1.0	162
8	Cross-reactive and species-specific immunoglobulin E epitopes of plant profilins: an experimental and structure-based analysis. Clinical and Experimental Allergy, 2006, 36, 920-929.	1.4	114
9	Expression levels of parvalbumins determine allergenicity of fish species. Allergy: European Journal of Allergy and Clinical Immunology, 2010, 65, 191-198.	2.7	109
10	Genomic characterization of members of the Bet ν 1 family: genes coding for allergens and pathogenesis-related proteins share intron positions. Gene, 1997, 197, 91-100.	1.0	107
11	Crossâ€reactive Nâ€glycans of Api g 5, a high molecular weight glycoprotein allergen from celery, are required for immunoglobulin E binding and activation of effector cells from allergic patients. FASEB Journal, 2003, 17, 1697-1699.	0.2	106
12	lgE sensitization profiles toward green and gold kiwifruits differ among patients allergic to kiwifruit from 3 European countries. Journal of Allergy and Clinical Immunology, 2004, 114, 1169-1175.	1.5	100
13	Component-resolved diagnosis of kiwifruit allergy with purified natural and recombinant kiwifruit allergens. Journal of Allergy and Clinical Immunology, 2010, 125, 687-694.e1.	1.5	95
14	Hev b 8, the <i>Hevea brasiliensis</i> Latex Profilin, Is a Cross-Reactive Allergen of Latex, Plant Foods and Pollen. International Archives of Allergy and Immunology, 2001, 125, 216-227.	0.9	93
15	lgE cross-reactivity between the major peanut allergen Ara h 2 and the nonhomologous allergens Ara h 1 and Ara h 3. Journal of Allergy and Clinical Immunology, 2013, 132, 118-124.e12.	1.5	85
16	Effects of gastrointestinal digestion and heating on the allergenicity of the kiwi allergens Act d 1, actinidin, and Act d 2, a thaumatinâ€ike protein. Molecular Nutrition and Food Research, 2008, 52, 1130-1139.	1.5	78
17	A New Allergen from Ragweed (Ambrosia artemisiifolia) with Homology to Art v 1 from Mugwort. Journal of Biological Chemistry, 2010, 285, 27192-27200.	1.6	77
18	Allergen mimotopes for 3â€dimensional epitope search and induction of antibodies inhibiting human IgE. FASEB Journal, 2000, 14, 2177-2184.	0.2	65

#	Article	IF	CITATIONS
19	Naturally occurring hypoallergenic Bet vÂ1 isoforms fail to induce IgE responses in individuals with birch pollen allergy. Journal of Allergy and Clinical Immunology, 2008, 121, 246-252.	1.5	58
20	Mal d 2, the Thaumatin-Like Allergen from Apple, Is Highly Resistant to Gastrointestinal Digestion and Thermal Processing. International Archives of Allergy and Immunology, 2008, 147, 289-298.	0.9	57
21	The performance of a component-based allergen microarray for the diagnosis of kiwifruit allergy. Clinical and Experimental Allergy, 2011, 41, 129-136.	1.4	54
22	Inhibition of tumor cell growth by antibodies induced after vaccination with peptides derived from the extracellular domain of Her-2/neu. International Journal of Cancer, 2003, 107, 976-983.	2.3	49
23	Characterization of Api g 1.0201 , a New Member of the Api g 1 Family of Celery Allergens. International Archives of Allergy and Immunology, 2000, 122 , $115-123$.	0.9	48
24	Characterization of cross-reactive bell pepper allergens involved in the latex-fruit syndrome. Clinical and Experimental Allergy, 2004, 34, 1739-1746.	1.4	48
25	Latex-allergic patients sensitized to the major allergen hevein and hevein-like domains of class I chitinases show no increased frequency of latex-associated plant food allergy. Molecular Immunology, 2011, 48, 600-609.	1.0	46
26	Type I allergy to elderberry (Sambucus nigra) is elicited by a 33.2â€fkDa allergen with significant homology to ribosomal inactivating proteins. Clinical and Experimental Allergy, 2003, 33, 1703-1710.	1.4	45
27	The constitutive expression of galectin-3 is downregulated in the intestinal epithelia of Crohn's disease patients, and tumour necrosis factor alpha decreases the level of galectin-3-specific mRNA in HCT-8 cells. European Journal of Gastroenterology and Hepatology, 2002, 14, 145-152.	0.8	43
28	Cloning and molecular characterization of the Hevea brasiliensis allergen Hev b 11, a class I chitinase. Clinical and Experimental Allergy, 2002, 32, 455-462.	1.4	40
29	Patients Allergic to Fish Tolerate Ray Based on the Low Allergenicity of Its Parvalbumin. Journal of Allergy and Clinical Immunology: in Practice, 2019, 7, 500-508.e11.	2.0	40
30	Purification and structural stability of the peach allergens $Pru p 1$ and $Pru p 3$. Molecular Nutrition and Food Research, 2008, 52 Suppl 2, S220-9.	1.5	39
31	Cor a 14, the allergenic 2S albumin from hazelnut, is highly thermostable and resistant to gastrointestinal digestion. Molecular Nutrition and Food Research, 2015, 59, 2077-2086.	1.5	39
32	NADP-dependent Mannitol Dehydrogenase, a Major Allergen of Cladosporium herbarum. Journal of Biological Chemistry, 2006, 281, 16354-16360.	1.6	36
33	Expression of the B subunit of the heat-labile enterotoxin of Escherichia coli in tobacco mosaic virus-infected Nicotiana benthamiana plants and its characterization as mucosal immunogen and adjuvant. Journal of Immunological Methods, 2004, 287, 203-215.	0.6	35
34	A mimotope defined by phage display inhibits IgE binding to the plant panallergen profilin. European Journal of Immunology, 1998, 28, 2921-2927.	1.6	32
35	Development of a novel Ara h 2 hypoallergen with no IgE binding or anaphylactogenic activity. Journal of Allergy and Clinical Immunology, 2020, 145, 229-238.	1.5	32
36	Natural and recombinant molecules of the cherry allergen Pru av 2 show diverse structural and B cell characteristics but similar T cell reactivity. Clinical and Experimental Allergy, 2006, 36, 359-368.	1.4	31

#	Article	IF	CITATIONS
37	Physicochemical properties and thermal stability of Lep w 1, the major allergen of whiff. Molecular Nutrition and Food Research, 2010, 54, 861-869.	1.5	31
38	Molecular and immunologic characterization of new isoforms of the Hevea brasiliensis latex allergen Hev b 7: Evidence of no cross-reactivity between Hev b 7 isoforms and potato patatin and proteins from avocado and banana⠆⠆⠆â Journal of Allergy and Clinical Immunology, 1999, 104, 1302-13	1.5 10.	29
39	Chimeras of Bet v 1 and Api g 1 reveal heterogeneous IgE responses in patients with birch pollen allergy. Journal of Allergy and Clinical Immunology, 2014, 134, 188-194.	1.5	29
40	The alpha and beta subchain of Amb a 1, the major ragweed-pollen allergen show divergent reactivity at the IgE and T-cell level. Molecular Immunology, 2009, 46, 2090-2097.	1.0	28
41	Differential T-cell responses and allergen uptake after exposure of dendritic cells to the birch pollen allergens Bet ν 1.0101, Bet ν 1.0401 and Bet ν 1.1001. Immunobiology, 2010, 215, 903-909.	0.8	28
42	Component-Resolved IgE Profiles in Austrian Patients with a Convincing History of Peanut Allergy. International Archives of Allergy and Immunology, 2015, 166, 13-24.	0.9	28
43	N-terminal sequences of high molecular weight allergens from celery tuber. Clinical and Experimental Allergy, 2000, 30, 566-570.	1.4	27
44	Impact of lipid binding on the tertiary structure and allergenic potential of Jug r 3, the non-specific lipid transfer protein from walnut. Scientific Reports, 2019, 9, 2007.	1.6	27
45	Lab scale and medium scale production of recombinant allergens in Escherichia coli. Methods, 2004, 32, 219-226.	1.9	26
46	Use of a genetic cholera toxin B subunit/allergen fusion molecule as mucosal delivery system with immunosuppressive activity against Th2 immune responses. Vaccine, 2007, 25, 8395-8404.	1.7	26
47	Purification and characterisation of a panel of peanut allergens suitable for use in allergy diagnosis. Molecular Nutrition and Food Research, 2008, 52 Suppl 2, NA-NA.	1.5	26
48	Comparison of natural and recombinant forms of the major fish allergen parvalbumin from cod and carp. Molecular Nutrition and Food Research, 2008, 52 Suppl 2, S196-207.	1.5	25
49	Bet v 1 and its homologous food allergen Api g 1 stimulate dendritic cells from birch pollenâ€allergic individuals to induce different Thâ€cell polarization. Allergy: European Journal of Allergy and Clinical Immunology, 2010, 65, 1388-1396.	2.7	25
50	New Bet v 1 isoforms including a naturally occurring truncated form of the protein derived from Austrian birch pollen. Molecular Immunology, 1999, 36, 639-645.	1.0	24
51	Entamoeba histolytica: Analysis of the trophozoite proteome by two-dimensional polyacrylamide gel electrophoresis. Experimental Parasitology, 2005, 110, 191-195.	0.5	24
52	Monitoring the epitope recognition profiles of IgE, IgG 1 , and IgG 4 during birch pollen immunotherapy. Journal of Allergy and Clinical Immunology, 2016, 137, 1600-1603.e1.	1.5	24
53	<scp>V</scp> ig r 6, the cytokininâ€specific binding protein from mung bean (<i><scp>V</scp>igna) Tj ETQq1 1 <scp>I</scp>g<scp>E</scp> from birch pollen allergic patients' sera. Molecular Nutrition and Food Research. 2014. 58. 625-634.</i>	0.784314 1.5	rgBT /Overlo
54	Pru p 3 as a marker for symptom severity for patients with peach allergy in a birch pollen environment. Journal of Allergy and Clinical Immunology, 2009, 124, 166-167.	1.5	21

#	Article	IF	Citations
55	The panel of egg allergens, Gal d 1-Gal d 5: Their improved purification and characterization. Molecular Nutrition and Food Research, 2008, 52 Suppl 2, NA-NA.	1.5	20
56	IgE, IgG4 and IgA specific to Bet v 1â€related food allergens do not predict oral allergy syndrome. Allergy: European Journal of Allergy and Clinical Immunology, 2015, 70, 59-66.	2.7	20
57	Concomitant sensitization to legumin, Fag e 2 and Fag e 5 predicts buckwheat allergy. Clinical and Experimental Allergy, 2018, 48, 217-224.	1.4	20
58	The Major Birch Pollen Allergen Bet ν 1 Induces Different Responses in Dendritic Cells of Birch Pollen Allergic and Healthy Individuals. PLoS ONE, 2015, 10, e0117904.	1.1	19
59	Purification and characterisation of relevant natural and recombinant apple allergens. Molecular Nutrition and Food Research, 2008, 52 Suppl 2, 1-12.	1.5	18
60	Distinct Lipid Transfer Proteins display different IgEâ€binding activities that are affected by fatty acid binding. Allergy: European Journal of Allergy and Clinical Immunology, 2019, 74, 827-831.	2.7	17
61	Navigating through the Jungle of Allergens: Features and Applications of Allergen Databases. International Archives of Allergy and Immunology, 2017, 173, 1-11.	0.9	16
62	Allergen databasesâ€"A critical evaluation. Allergy: European Journal of Allergy and Clinical Immunology, 2019, 74, 2057-2060.	2.7	15
63	Identification of vicilin, legumin and antimicrobial peptide 2a as macadamia nut allergens. Food Chemistry, 2022, 370, 131028.	4.2	13
64	Qualitative analysis of Xinyue Capsules $(\mathring{a}_{f}fg, \grave{e}_{f}fa)$) by high-performance liquid chromatography: Preliminary evaluation of drug quality in a Sino-Austrian joint study. Chinese Journal of Integrative Medicine, 2015, 21, 772-777.	0.7	12
65	lgEâ€crossâ€blocking antibodies to <i>Fagales</i> following sublingual immunotherapy with recombinant Bet v 1. Allergy: European Journal of Allergy and Clinical Immunology, 2021, 76, 2555-2564.	2.7	12
66	A Cross-Reactive Human Single-Chain Antibody for Detection of Major Fish Allergens, Parvalbumins, and Identification of a Major IgE-Binding Epitope. PLoS ONE, 2015, 10, e0142625.	1.1	12
67	Engineering of structural variants of the major peanut allergens Ara h 2 and Ara h 6 for allergen-specific immunotherapy. Journal of Allergy and Clinical Immunology, 2019, 143, 1226-1229.e10.	1.5	11
68	Production and characterization of an allergen panel for component-resolved diagnosis of celery allergy. Molecular Nutrition and Food Research, 2008, 52 Suppl 2, S241-50.	1.5	10
69	Nonapeptides Selected by Phage Display Mimic the Binding Sites of Monoclonal Antibodies BIP1 and BIP4 on Bet v 1, the Major Birch Pollen Allergen. International Archives of Allergy and Immunology, 1999, 118, 224-225.	0.9	9
70	Fish Allergy Around the World—Precise Diagnosis to Facilitate Patient Management. Frontiers in Allergy, 2021, 2, 732178.	1.2	9
71	lsotype-specific binding patterns of serum antibodies to multiple conformational epitopes of Bet v 1. Journal of Allergy and Clinical Immunology, 2022, 149, 1786-1794.e12.	1.5	8
72	Fish-derived low molecular weight components modify bronchial epithelial barrier properties and release of pro-inflammatory cytokines. Molecular Immunology, 2019, 112, 140-150.	1.0	6

#	Article	IF	Citations
73	The Major Peanut Allergen Ara h 2 Produced in Nicotiana benthamiana Contains Hydroxyprolines and Is a Viable Alternative to the E. Coli Product in Allergy Diagnosis. Frontiers in Plant Science, 2021, 12, 723363.	1.7	6
74	Stable Plant Food Allergens II: Storage Proteins. , 2017, , 77-90.		4
75	Diagnostic performance of single and multiplex IgE testing to recombinant parvalbumins in fish allergy. Annals of Allergy, Asthma and Immunology, 2012, 109, 362-363.	0.5	3
76	Random mutagenesis and phage display technology as a tool for identifying ige epitopes of the birch pollen allergen Bet ν 1. Clinical and Translational Allergy, 2014, 4, .	1.4	3
77	Extract-Based and Molecular Diagnostics in Fish Allergy. , 2017, , 381-397.		3
78	Introduction to Molecular Allergology: Protein Families, Databases, and Potential Benefits. , 2017, , 3-19.		3
79	Structure, Allergenicity, and Cross-Reactivity of Plant Allergens. , 2009, , 127-151.		3
80	Bet v 1-Homologous Allergens. , 0, , 125-140.		2
81	471â€∫lgE from Birch Pollen Allergic Patients Cross-reacts with Two Distinct Bet V 1 Related Proteins in Mung Beans. World Allergy Organization Journal, 2012, 5, S149-S150.	1.6	1
82	IgE cross-reactivity between the major peanut allergen Ara h 2 and the non-homologous allergens Ara h 1 and Ara h 3. Clinical and Translational Allergy, 2013, 3, .	1.4	1
83	Influence of Conformational and Linear IgE Epitopes on Ara h 2-Specific IgE-Binding. Journal of Allergy and Clinical Immunology, 2017, 139, AB378.	1.5	1
84	Einfý hrung in die molekulare Allergologie: Proteinfamilien, Datenbanken und potenzieller Nutzen. , 2015, , 1-12.		1
85	Structural analysis of purified natural Amb a 1. Journal of Allergy and Clinical Immunology, 2002, 109, S138-S138.	1.5	O
86	Profilins., 0,, 105-124.		0
87	IgE Cross-reactivity between the Cysteine Proteases Der p 1 and Act c 1 , the Major Allergens from House Dust Mites and Kiwifruit. Journal of Allergy and Clinical Immunology, 2006, 117 , S49.	1.5	O
88	Allergenic Fruit TLPs Possess Different Degrees of IgE Cross-reactivity. Journal of Allergy and Clinical Immunology, 2006, 117, S49.	1.5	0
89	AllFam - the database of protein families of allergens. World Allergy Organization Journal, 2007, &NA, S305.	1.6	0
90	The evolutionary biology of allergens of the cupin and the Bet ν 1 superfamilies. World Allergy Organization Journal, 2007, &NA, S286.	1.6	0

#	Article	IF	CITATIONS
91	The EuroPrevall allergen library. World Allergy Organization Journal, 2007, &NA, S285-S286.	1.6	О
92	95â€∫Specific Recognition of the Major Birch Pollen Allergen BET V 1 Programs Dendritic Cells to Induce Either th2 or Tolerogenic Responses. World Allergy Organization Journal, 2012, 5, S31-S32.	1.6	0
93	23â€∫Grafting of BET V 1 Epitopes onto its Homologue API G 1 Reveals Patient-Specific IgE Recognition Profiles. World Allergy Organization Journal, 2012, 5, S8.	1.6	0
94	15â€∫A Bioinformatic Approach to Allergen Nomenclature Applied to Allergens From the Non-Biting Midge Chironomus thummi thummi. World Allergy Organization Journal, 2012, 5, S5-S6.	1.6	0
95	16â€f Pollen Allergens Differ From Nonallergenic Pollen Proteins by Their Lower Extent of Evolutionary Conservation. World Allergy Organization Journal, 2012, 5, S6.	1.6	0
96	Wegweiser durch den Allergendschungel: Allergendatenbanken, ihre Merkmale und Anwendungsgebiete. Karger Kompass Pneumologie, 2017, 5, 138-148.	0.0	0
97	Extrakt-basierte und molekulare Diagnostik bei Fischallergie. , 2015, , 291-302.		0
98	Stabile pflanzliche Nahrungsmittelallergene II: Speicherproteine., 2015,, 61-71.		0