
## Pyuck-Pa Choi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2356167/publications.pdf Version: 2024-02-01



DVIICK-DA CHOI

| #  | Article                                                                                                                                                                                      | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Grain boundary segregation engineering in metallic alloys: A pathway to the design of interfaces.<br>Current Opinion in Solid State and Materials Science, 2014, 18, 253-261.                | 5.6 | 466       |
| 2  | Atomic-Scale Quantification of Grain Boundary Segregation in Nanocrystalline Material. Physical Review Letters, 2014, 112, 126103.                                                           | 2.9 | 284       |
| 3  | Strain hardening by dynamic slip band refinement in a high-Mn lightweight steel. Acta Materialia, 2016,<br>116, 188-199.                                                                     | 3.8 | 276       |
| 4  | Atomic-scale mechanisms of deformation-induced cementite decomposition in pearlite. Acta<br>Materialia, 2011, 59, 3965-3977.                                                                 | 3.8 | 269       |
| 5  | Segregation engineering enables nanoscale martensite to austenite phase transformation at grain boundaries: A pathway to ductile martensite. Acta Materialia, 2013, 61, 6132-6152.           | 3.8 | 264       |
| 6  | Chemical gradients across phase boundaries between martensite and austenite in steel studied by atom probe tomography and simulation. Acta Materialia, 2011, 59, 364-374.                    | 3.8 | 255       |
| 7  | Segregation Stabilizes Nanocrystalline Bulk Steel with Near Theoretical Strength. Physical Review<br>Letters, 2014, 113, 106104.                                                             | 2.9 | 224       |
| 8  | Precipitation and austenite reversion behavior of a maraging steel produced by selective laser melting. Journal of Materials Research, 2014, 29, 2072-2079.                                  | 1.2 | 221       |
| 9  | Microstructural evolution of a Ni-based superalloy (617B) at 700°C studied by electron microscopy and atom probe tomography. Acta Materialia, 2012, 60, 1731-1740.                           | 3.8 | 212       |
| 10 | Atomic-scale analysis of carbon partitioning between martensite and austenite by atom probe tomography and correlative transmission electron microscopy. Acta Materialia, 2014, 65, 215-228. | 3.8 | 205       |
| 11 | Evolution of strength and microstructure during annealing of heavily cold-drawn 6.3 GPa hypereutectoid pearlitic steel wire. Acta Materialia, 2012, 60, 4005-4016.                           | 3.8 | 187       |
| 12 | Metallic composites processed via extreme deformation: Toward the limits of strength in bulk<br>materials. MRS Bulletin, 2010, 35, 982-991.                                                  | 1.7 | 180       |
| 13 | Elemental partitioning and mechanical properties of Ti- and Ta-containing Co–Al–W-base superalloys studied by atom probe tomography and nanoindentation. Acta Materialia, 2014, 78, 78-85.   | 3.8 | 168       |
| 14 | Nanoscale austenite reversion through partitioning, segregation and kinetic freezing: Example of a<br>ductile 2GPa Fe–Cr–C steel. Acta Materialia, 2012, 60, 2790-2804.                      | 3.8 | 167       |
| 15 | Atomic-scale compositional characterization of a nanocrystalline AlCrCuFeNiZn high-entropy alloy using atom probe tomography. Acta Materialia, 2013, 61, 4696-4706.                          | 3.8 | 138       |
| 16 | Element-Resolved Corrosion Analysis of Stainless-Type Glass-Forming Steels. Science, 2013, 341, 372-376.                                                                                     | 6.0 | 136       |
| 17 | Dynamic strain aging studied at the atomic scale. Acta Materialia, 2015, 86, 34-42.                                                                                                          | 3.8 | 136       |
| 18 | Thermal stability of electrodeposited nanocrystalline Co-1.1at.%P. Acta Materialia, 2005, 53, 4473-4481.                                                                                     | 3.8 | 135       |

| #  | Article                                                                                                                                                                                                                                      | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Advanced Scale Bridging Microstructure Analysis of Single Crystal Niâ€Base Superalloys. Advanced<br>Engineering Materials, 2015, 17, 216-230.                                                                                                | 1.6  | 117       |
| 20 | Enhanced Congo red dye removal from aqueous solutions using iron nanoparticles: adsorption, kinetics, and equilibrium studies. Dalton Transactions, 2017, 46, 15470-15479.                                                                   | 1.6  | 103       |
| 21 | Atomically Embedded Ag via Electrodiffusion Boosts Oxygen Evolution of CoOOH Nanosheet Arrays.<br>ACS Catalysis, 2020, 10, 562-569.                                                                                                          | 5.5  | 93        |
| 22 | Investigation of the diffusion behavior of sodium in Cu(In,Ga)Se2 layers. Journal of Applied Physics, 2014, 115, .                                                                                                                           | 1.1  | 90        |
| 23 | Characterization of Grain Boundaries in Cu(In,Ga)Se\$_{f 2}\$ Films Using Atom-Probe Tomography.<br>IEEE Journal of Photovoltaics, 2011, 1, 207-212.                                                                                         | 1.5  | 87        |
| 24 | Confined and Chemically Flexible Grain Boundaries in Polycrystalline Compound Semiconductors.<br>Advanced Energy Materials, 2012, 2, 992-998.                                                                                                | 10.2 | 84        |
| 25 | Interface-directed spinodal decomposition in TiAlN/CrN multilayer hard coatings studied by atom probe tomography. Acta Materialia, 2013, 61, 7534-7542.                                                                                      | 3.8  | 77        |
| 26 | Shear-Induced Mixing Governs Codeformation of Crystalline-Amorphous Nanolaminates. Physical Review Letters, 2014, 113, 035501.                                                                                                               | 2.9  | 70        |
| 27 | Shear band-driven precipitate dispersion for ultrastrong ductile medium-entropy alloys. Nature Communications, 2021, 12, 4703.                                                                                                               | 5.8  | 70        |
| 28 | On the Spheroidized Carbide Dissolution and Elemental Partitioning in High Carbon Bearing Steel<br>100Cr6. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2014,<br>45, 595-606.                      | 1.1  | 60        |
| 29 | Effects of phase composition and elemental partitioning on soft magnetic properties of AlFeCoCrMn<br>high entropy alloys. Acta Materialia, 2019, 171, 31-39.                                                                                 | 3.8  | 60        |
| 30 | Comparative atom probe study of Cu(In,Ga)Se2 thin-film solar cells deposited on soda-lime glass and mild steel substrates. Journal of Applied Physics, 2011, 110, .                                                                          | 1.1  | 59        |
| 31 | On the detection of multiple events in atom probe tomography. Ultramicroscopy, 2018, 189, 54-60.                                                                                                                                             | 0.8  | 59        |
| 32 | (Nb <sub><i>x</i></sub> , Zr <sub>1–<i>x</i></sub> ) <sub>4</sub> AlC <sub>3</sub> MAX Phase Solid<br>Solutions: Processing, Mechanical Properties, and Density Functional Theory Calculations. Inorganic<br>Chemistry, 2016, 55, 5445-5452. | 1.9  | 54        |
| 33 | A new method for mapping the three-dimensional atomic distribution within nanoparticles by atom probe tomography (APT). Ultramicroscopy, 2018, 190, 30-38.                                                                                   | 0.8  | 51        |
| 34 | Cuâ€Rich Precursors Improve Kesterite Solar Cells. Advanced Energy Materials, 2014, 4, 1300543.                                                                                                                                              | 10.2 | 49        |
| 35 | Effects of Ru on elemental partitioning and precipitation of topologically close-packed phases in<br>Ni-based superalloys. Scripta Materialia, 2015, 101, 44-47.                                                                             | 2.6  | 49        |
| 36 | The Maximum Separation Cluster Analysis Algorithm for Atom-Probe Tomography: Parameter Determination and Accuracy. Microscopy and Microanalysis, 2014, 20, 1662-1671.                                                                        | 0.2  | 46        |

| #  | Article                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Crucial microstructural feature to determine the impact toughness of intercritically annealed medium-Mn steel with triplex-phase microstructure. Acta Materialia, 2019, 164, 122-134.                                    | 3.8  | 46        |
| 38 | Enhancement of the photocatalytic reactivity of TiO2 nano-particles by a simple mechanical blending with hydrophobic mordenite (MOR) zeolite. Applied Catalysis B: Environmental, 2009, 89, 406-410.                     | 10.8 | 44        |
| 39 | Elemental partitioning and site-occupancy in γ/γ′ forming Co-Ti-Mo and Co-Ti-Cr alloys. Scripta Materialia,<br>2018, 154, 159-162.                                                                                       | 2.6  | 44        |
| 40 | Atomic cale Mapping of Impurities in Partially Reduced Hollow TiO <sub>2</sub> Nanowires.<br>Angewandte Chemie - International Edition, 2020, 59, 5651-5655.                                                             | 7.2  | 42        |
| 41 | Passivation of Deep-Level Defects by Cesium Fluoride Post-Deposition Treatment for Improved Device<br>Performance of Cu(In,Ga)Se <sub>2</sub> Solar Cells. ACS Applied Materials & Interfaces, 2019, 11,<br>35653-35660. | 4.0  | 41        |
| 42 | On Local Phase Equilibria and the Appearance of Nanoparticles in the Microstructure of Single rystal<br>Niâ€Base Superalloys. Advanced Engineering Materials, 2016, 18, 1556-1567.                                       | 1.6  | 39        |
| 43 | Dissecting functional degradation in NiTi shape memory alloys containing amorphous regions via atomistic simulations. Acta Materialia, 2021, 202, 331-349.                                                               | 3.8  | 39        |
| 44 | Reducing Time to Discovery: Materials and Molecular Modeling, Imaging, Informatics, and Integration.<br>ACS Nano, 2021, 15, 3971-3995.                                                                                   | 7.3  | 36        |
| 45 | Mechanisms of extrinsic alkali incorporation in CIGS solar cells on flexible polyimide elucidated by nanoscale and quantitative analyses. Nano Energy, 2020, 67, 104201.                                                 | 8.2  | 35        |
| 46 | Orientation-dependent plastic deformation mechanisms and competition with stress-induced phase transformation in microscale NiTi. Acta Materialia, 2021, 208, 116731.                                                    | 3.8  | 31        |
| 47 | On the nature of twin boundary-associated strengthening in Fe-Mn-C steel. Scripta Materialia, 2018, 156, 27-31.                                                                                                          | 2.6  | 30        |
| 48 | Thermal stability of TiAlN/CrN multilayer coatings studied by atom probe tomography.<br>Ultramicroscopy, 2011, 111, 518-523.                                                                                             | 0.8  | 29        |
| 49 | Self-assembled nano-composite perovskites as highly efficient and robust hybrid cathodes for solid<br>oxide fuel cells. Journal of Materials Chemistry A, 2022, 10, 2496-2508.                                           | 5.2  | 29        |
| 50 | Improved strength of a medium-Mn steel by V addition without sacrificing ductility. Materials Science<br>& Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 802,<br>140681.         | 2.6  | 27        |
| 51 | On the microstructural evolution and partitioning behavior of L12-structured γ′-based Co-Ti-W alloys upon Cr and Al alloying. Intermetallics, 2019, 104, 97-102.                                                         | 1.8  | 26        |
| 52 | Interaction of tungsten nanopowders with air under different conditions. Scripta Materialia, 2005, 52, 375-380.                                                                                                          | 2.6  | 24        |
| 53 | Thermal dissolution mechanisms of AlN/CrN hard coating superlattices studied by atom probe tomography and transmission electron microscopy. Acta Materialia, 2015, 85, 32-41.                                            | 3.8  | 24        |
| 54 | Unraveling the Metastability of C <sub><i>n</i></sub> <sup>2+</sup> ( <i>n</i> = 2–4) Clusters. Journal of Physical Chemistry Letters, 2019, 10, 581-588.                                                                | 2.1  | 24        |

| #  | Article                                                                                                                                                                                                                               | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Modulation of plastic flow in metallic glasses via nanoscale networks of chemical heterogeneities.<br>Acta Materialia, 2017, 140, 116-129.                                                                                            | 3.8 | 21        |
| 56 | Application of Focused Ion Beam to Atom Probe Tomography Specimen Preparation from Mechanically<br>Alloyed Powders. Microscopy and Microanalysis, 2007, 13, 347-353.                                                                  | 0.2 | 19        |
| 57 | Deformation induced alloying in crystalline – metallic glass nano-composites. Materials Science &<br>Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 628, 269-280.                              | 2.6 | 19        |
| 58 | Evaluation of Analysis Conditions for Laser-Pulsed Atom Probe Tomography: Example of Cemented Tungsten Carbide. Microscopy and Microanalysis, 2017, 23, 431-442.                                                                      | 0.2 | 19        |
| 59 | A simple and robust route toward flexible CIGS photovoltaic devices on polymer substrates: Atomic level microstructural analysis and local opto-electronic investigation. Solar Energy Materials and Solar Cells, 2019, 195, 280-290. | 3.0 | 19        |
| 60 | Tailoring nanostructured NbCoSn-based thermoelectric materials via crystallization of an amorphous precursor. Nano Energy, 2021, 80, 105518.                                                                                          | 8.2 | 19        |
| 61 | Atom Probe Tomography Studies on the Cu(In,Ga)Se <sub>2</sub> Grain Boundaries. Journal of Visualized Experiments, 2013, , .                                                                                                          | 0.2 | 18        |
| 62 | Atomic diffusion induced degradation in bimetallic layer coated cemented tungsten carbide.<br>Corrosion Science, 2017, 120, 1-13.                                                                                                     | 3.0 | 18        |
| 63 | Compositional gradients and impurity distributions in CuInSe <sub>2</sub> thinâ€film solar cells<br>studied by atom probe tomography. Surface and Interface Analysis, 2012, 44, 1386-1388.                                            | 0.8 | 17        |
| 64 | Fabrication of Atom Probe Tomography Specimens from Nanoparticles Using a Fusible Bi–In–Sn Alloy<br>as an Embedding Medium. Microscopy and Microanalysis, 2019, 25, 438-446.                                                          | 0.2 | 17        |
| 65 | Effects of Mo on the mechanical behavior of γ/γʹ-strengthened Co-Ti-based alloys. Acta Materialia, 2020,<br>197, 69-80.                                                                                                               | 3.8 | 16        |
| 66 | Three-dimensional atomic mapping of ligands on palladium nanoparticles by atom probe tomography.<br>Nature Communications, 2021, 12, 4301.                                                                                            | 5.8 | 16        |
| 67 | Spallation resistance of oxide scales on Alloy 617 enhanced by boron addition. Corrosion Science, 2018, 140, 196-204.                                                                                                                 | 3.0 | 14        |
| 68 | FeNiCoAlTaB superelastic and shape-memory wires with oligocrystalline grain structure. Scripta<br>Materialia, 2020, 188, 1-5.                                                                                                         | 2.6 | 13        |
| 69 | On the oxygen-induced hot cracking in a direct laser deposited Ni-based superalloy. Scripta Materialia,<br>2021, 196, 113751.                                                                                                         | 2.6 | 13        |
| 70 | Stabilization of monodispersed spherical silica particles and their alignment with reduced crack density. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 441, 354-359.                                       | 2.3 | 12        |
| 71 | On the Multiple Event Detection in Atom Probe Tomography. Microscopy and Microanalysis, 2017, 23, 618-619.                                                                                                                            | 0.2 | 12        |
| 72 | Characterization of Pd and Pd@Au core-shell nanoparticles using atom probe tomography and field evaporation simulation. Journal of Alloys and Compounds, 2020, 831, 154721.                                                           | 2.8 | 12        |

| #  | Article                                                                                                                                                                                                                                                                                                                      | IF                                                        | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|-----------|
| 73 | Hot cracking behavior of additively manufactured D2 steel. Materials Characterization, 2021, 178, 111217.                                                                                                                                                                                                                    | 1.9                                                       | 11        |
| 74 | Transmission electron microscopy and atom probe specimen preparation from mechanically alloyed powder using the focused ion-beam lift-out technique. Journal of Electron Microscopy, 2007, 56, 43-49.                                                                                                                        | 0.9                                                       | 10        |
| 75 | Additive manufacturing of titanium-base alloys with equiaxed microstructures using powder blends.<br>Additive Manufacturing, 2020, 36, 101467.                                                                                                                                                                               | 1.7                                                       | 10        |
| 76 | Homogeneity of mechanically alloyed nano-crystalline Fe – Cu-powders. International Journal of<br>Materials Research, 2008, 99, 541-547.                                                                                                                                                                                     | 0.1                                                       | 8         |
| 77 | Oxidation behavior of AlN/CrN multilayered hard coatings. Nano Convergence, 2017, 4, 15.                                                                                                                                                                                                                                     | 6.3                                                       | 8         |
| 78 | Compositional evolution of long-period stacking ordered structures in magnesium studied by atom probe tomography. Scripta Materialia, 2018, 156, 55-59.                                                                                                                                                                      | 2.6                                                       | 8         |
| 79 | Investigation of sputter-deposited Al–2at.%Cu layers by means of the tomographic atom probe (TAP).<br>Scripta Materialia, 2005, 53, 323-327.                                                                                                                                                                                 | 2.6                                                       | 7         |
| 80 | Publisher's Note: Shear-Induced Mixing Governs Codeformation of Crystalline-Amorphous<br>Nanolaminates [Phys. Rev. Lett. <b>113</b> , 035501 (2014)]. Physical Review Letters, 2014, 113, .                                                                                                                                  | 2.9                                                       | 7         |
| 81 | Microstructural evolution of the heat affected zone of a Co–Ti–W alloy upon laser cladding with a<br>CoNiCrAlY coating. Materials Characterization, 2019, 158, 109998.                                                                                                                                                       | 1.9                                                       | 7         |
| 82 | Enhanced microstructural stability of γ/γ′-strengthened Co-Ti-Mo-based alloys through Al additions.<br>Acta Materialia, 2021, 214, 117011.                                                                                                                                                                                   | 3.8                                                       | 7         |
| 83 | An assessment of the homogeneity of nano-crystalline Fe–Cu powders as studied by means of APT.<br>Ultramicroscopy, 2009, 109, 599-605.                                                                                                                                                                                       | 0.8                                                       | 6         |
| 84 | Detection of Cu2Zn5SnSe8 and Cu2Zn6SnSe9 phases in co-evaporated Cu2ZnSnSe4 thin-films. Applied Physics Letters, 2015, 107, .                                                                                                                                                                                                | 1.5                                                       | 6         |
| 85 | Amorphous phase separation in an Fe-based bulk metallic glass. Materials Letters, 2017, 190, 161-164.                                                                                                                                                                                                                        | 1.3                                                       | 6         |
| 86 | Nano-scale Characterization of Thin-Film Solar Cells. Microscopy and Microanalysis, 2014, 20, 394-395.                                                                                                                                                                                                                       | 0.2                                                       | 5         |
| 87 | Effects of transformation-induced plasticity on the small-scale deformation behavior of single crystalline complex concentrated alloys. Scripta Materialia, 2020, 176, 122-125.<br>Variable chemical decoration of extended defects in Cu-poor <mml:math< td=""><td>2.6</td><td>5</td></mml:math<>                           | 2.6                                                       | 5         |
| 88 | xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi<br>mathvariant="normal"&gt;C  <mml:msub> <mml:mi<br>mathvariant="normal"&gt;u  <mml:mn>2 </mml:mn> </mml:mi<br></mml:msub> <mml:mi>ZnSnS </mml:mi> <mml:msub><br/>mathvariant="normal"&gt;e  <mml:mn>4 </mml:mn> </mml:msub> </mml:mi<br></mml:mrow> thin | < <mark>0.9</mark><br><mml:mi< td=""><td>5</td></mml:mi<> | 5         |
| 89 | films. Physical Review Materials, 2019, 3,<br>Atom Probe Tomography Investigations of Ag Nanoparticles Embedded in Pulse-Electrodeposited Ni<br>Films. Microscopy and Microanalysis, 2021, 27, 1007-1016.                                                                                                                    | 0.2                                                       | 4         |
| 90 | Formation of nanometer-sized Cu-Sn-Se particles in Cu2ZnSnSe4 thin-films and their effect on solar cell efficiency. Acta Materialia, 2017, 132, 276-284.                                                                                                                                                                     | 3.8                                                       | 3         |

| #   | Article                                                                                                                                                                                           | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Decomposition behavior of yttria-stabilized zirconia and its effect on directed energy deposited<br>Ti-based composite material. Journal of Materials Science and Technology, 2022, 112, 138-150. | 5.6 | 3         |
| 92  | Kinetic stabilization of a topotactically transformed texture morphology <i>via</i> doping in Ni-rich<br>lithium layered oxides. Journal of Materials Chemistry A, 2022, 10, 13735-13743.         | 5.2 | 3         |
| 93  | Co-deformation of crystalline-amorphous nanolaminates. Microscopy and Microanalysis, 2015, 21, 361-362.                                                                                           | 0.2 | 2         |
| 94  | Degradation Mechanism of Molds for Precision Glass Molding. Microscopy and Microanalysis, 2017, 23, 698-699.                                                                                      | 0.2 | 1         |
| 95  | Spatial Distributions of Alloying Elements Obtained from Atom Probe Tomography of the Amorphous<br>Ribbon Fe75C11Si2B8Cr4. Korean Journal of Materials Research, 2013, 23, 190-193.               | 0.1 | 1         |
| 96  | Elemental Sub-Lattice Occupation and Microstructural Evolution in γ/γ′ Co–12Ti–4Mo–Cr Alloys.<br>Microscopy and Microanalysis, 2021, , 1-5.                                                       | 0.2 | 0         |
| 97  | Atom Probe Tomography: Unveiling the Elemental Distribution in Nanostructured Materials With Near-Atomic Resolution. , 2022, , 641-647.                                                           |     | 0         |
| 98  | Atom Probe Tomography: A Characterization Method for Three-dimensional Elemental Mapping at the<br>Atomic Scale. Journal of Korean Powder Metallurgy Institute, 2012, 19, 67-71.                  | 0.2 | 0         |
| 99  | Novel approaches for analyzing nanoparticles using Atom Probe Tomography. Journal of Surface<br>Analysis (Online), 2019, 26, 140-141.                                                             | 0.1 | 0         |
| 100 | Joining dissimilar metal of Ti and CoCrMo using directed energy deposition. Journal of Materials<br>Science and Technology, 2021, 111, 99-99.                                                     | 5.6 | 0         |