
Jed O Kaplan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2356018/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A fast mean-preserving spline for interpolating interval data. Journal of Atmospheric and Oceanic Technology, 2022, , .	1.3	1
2	Tropical forest restoration under future climate change. Nature Climate Change, 2022, 12, 279-283.	18.8	35
3	Land Use Change in a Pericolonial Society: Intensification and Diversification in Ifugao, Philippines Between 1570 and 1800 CE. Frontiers in Earth Science, 2022, 10, .	1.8	2
4	UAS-based high resolution mapping of evapotranspiration in a Mediterranean tree-grass ecosystem. Agricultural and Forest Meteorology, 2022, 321, 108981.	4.8	8
5	Response of dust emissions in southwestern North America to 21st century trends in climate, CO ₂ fertilization, and land use: implications for air quality. Atmospheric Chemistry and Physics, 2021, 21, 57-68.	4.9	8
6	High Spatial and Temporal Resolution Energy Flux Mapping of Different Land Covers Using an Off-the-Shelf Unmanned Aerial System. Remote Sensing, 2021, 13, 1286.	4.0	14
7	People have shaped most of terrestrial nature for at least 12,000 years. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	370
8	Mapping past human land use using archaeological data: A new classification for global land use synthesis and data harmonization. PLoS ONE, 2021, 16, e0246662.	2.5	47
9	Improved estimates of preindustrial biomass burning reduce the magnitude of aerosol climate forcing in the Southern Hemisphere. Science Advances, 2021, 7, .	10.3	22
10	The role of land cover in the climate of glacial Europe. Climate of the Past, 2021, 17, 1161-1180.	3.4	12
11	Non-uniform tropical forest responses to the â€ [~] Columbian Exchange' in the Neotropics and Asia-Pacific. Nature Ecology and Evolution, 2021, 5, 1174-1184.	7.8	11
12	The WGLC global gridded lightning climatology and time series. Earth System Science Data, 2021, 13, 3219-3237.	9.9	30
13	Development and testing scenarios for implementing land use and land cover changes during the Holocene in Earth system model experiments. Geoscientific Model Development, 2020, 13, 805-824.	3.6	36
14	Impact of Changes to the Atmospheric Soluble Iron Deposition Flux on Ocean Biogeochemical Cycles in the Anthropocene. Global Biogeochemical Cycles, 2020, 34, e2019GB006448.	4.9	62
15	Tropospheric ozone radiative forcing uncertainty due to pre-industrial fire and biogenic emissions. Atmospheric Chemistry and Physics, 2020, 20, 10937-10951.	4.9	15
16	Trends and spatial shifts in lightning fires and smoke concentrations in response to 21st century climate over the national forests and parks of the western United States. Atmospheric Chemistry and Physics, 2020, 20, 8827-8838.	4.9	32
17	Harmonization of global land use change and management for the period 850–2100 (LUH2) for CMIP6. Geoscientific Model Development, 2020, 13, 5425-5464.	3.6	408
18	Mediterranean land use systems from prehistory to antiquity: a case study from Peloponnese (Greece). Journal of Land Use Science, 2019, 14, 1-20.	2.2	19

#	Article	IF	CITATIONS
19	Archaeological assessment reveals Earth's early transformation through land use. Science, 2019, 365, 897-902.	12.6	369
20	Diversification, Intensification and Specialization: Changing Land Use in Western Africa from 1800 BC to AD 1500. Journal of World Prehistory, 2019, 32, 179-228.	3.6	34
21	Increases in heat-induced tree mortality could drive reductions of biomass resources in Canada's managed boreal forest. Landscape Ecology, 2019, 34, 403.	4.2	40
22	Effects of land use and anthropogenic aerosol emissions in the Roman Empire. Climate of the Past, 2019, 15, 1885-1911.	3.4	9
23	Global Carbon Budget 2019. Earth System Science Data, 2019, 11, 1783-1838.	9.9	1,159
24	Bayesian Analysis of the Glacialâ€Interglacial Methane Increase Constrained by Stable Isotopes and Earth System Modeling. Geophysical Research Letters, 2018, 45, 3653-3663.	4.0	9
25	Europe's lost forests: a pollen-based synthesis for the last 11,000 years. Scientific Reports, 2018, 8, 716.	3.3	139
26	Drivers and trajectories of land cover change in East Africa: Human and environmental interactions from 6000â€`years ago to present. Earth-Science Reviews, 2018, 178, 322-378.	9.1	129
27	Mercury from wildfires: Global emission inventories and sensitivity to 2000–2050 global change. Atmospheric Environment, 2018, 173, 6-15.	4.1	59
28	The pyrogeography of eastern boreal Canada from 1901 to 2012 simulated with the LPJ-LMfire model. Biogeosciences, 2018, 15, 1273-1292.	3.3	17
29	The climate, the fuel and the land use: Longâ€ŧerm regional variability of biomass burning in boreal forests. Clobal Change Biology, 2018, 24, 4929-4945.	9.5	26
30	European Forest Cover During the Past 12,000 Years: A Palynological Reconstruction Based on Modern Analogs and Remote Sensing. Frontiers in Plant Science, 2018, 9, 253.	3.6	65
31	Quantifying Land Use in Past Societies from Cultural Practice and Archaeological Data. Land, 2018, 7, 9.	2.9	26
32	Finding the anthropocene in tropical forests. Anthropocene, 2018, 23, 5-16.	3.3	26
33	Reassessment of pre-industrial fire emissions strongly affects anthropogenic aerosol forcing. Nature Communications, 2018, 9, 3182.	12.8	75
34	Human-induced erosion has offset one-third of carbon emissions from land cover change. Nature Climate Change, 2017, 7, 345-349.	18.8	149
35	Land use for animal production in global change studies: Defining and characterizing a framework. Global Change Biology, 2017, 23, 4457-4471.	9.5	59
36	Understanding the glacial methane cycle. Nature Communications, 2017, 8, 14383.	12.8	37

#	Article	IF	CITATIONS
37	Reply to 'Limited Late Antique cooling'. Nature Geoscience, 2017, 10, 243-243.	12.9	13
38	Vegetation of Eurasia from the last glacial maximum to present: Key biogeographic patterns. Quaternary Science Reviews, 2017, 157, 80-97.	3.0	159
39	Quantifying the effects of land use and climate on Holocene vegetation in Europe. Quaternary Science Reviews, 2017, 171, 20-37.	3.0	97
40	Quantification of uncertainties in global grazing systems assessment. Global Biogeochemical Cycles, 2017, 31, 1089-1102.	4.9	62
41	Constraining the Deforestation History of Europe: Evaluation of Historical Land Use Scenarios with Pollen-Based Land Cover Reconstructions. Land, 2017, 6, 91.	2.9	62
42	A globally calibrated scheme for generating daily meteorology from monthly statistics: Global-WGEN (GWGEN)Âv1.0. Geoscientific Model Development, 2017, 10, 3771-3791.	3.6	1
43	The Fire Modeling Intercomparison Project (FireMIP), phase 1: experimental and analytical protocols with detailed model descriptions. Geoscientific Model Development, 2017, 10, 1175-1197.	3.6	159
44	The PMIP4 contribution to CMIP6 – Part 3: The last millennium, scientific objective, and experimental design for the PMIP4 <i>past1000</i> simulations. Geoscientific Model Development, 2017, 10, 4005-4033.	3.6	155
45	The biogeophysical climatic impacts of anthropogenic land use change during the Holocene. Climate of the Past, 2016, 12, 923-941.	3.4	24
46	Modeling spatiotemporal dynamics of global wetlands: comprehensive evaluation of a new sub-grid TOPMODEL parameterization and uncertainties. Biogeosciences, 2016, 13, 1387-1408.	3.3	55
47	The status and challenge of global fire modelling. Biogeosciences, 2016, 13, 3359-3375.	3.3	274
48	Large Scale Anthropogenic Reduction of Forest Cover in Last Glacial Maximum Europe. PLoS ONE, 2016, 11, e0166726.	2.5	47
49	Late Holocene climate: Natural or anthropogenic?. Reviews of Geophysics, 2016, 54, 93-118.	23.0	150
50	Cooling and societal change during the Late Antique Little Ice Age from 536 to around 660 AD. Nature Geoscience, 2016, 9, 231-236.	12.9	596
51	Mapping Human Subsistence in West Africa (1000 BC - AD 1500). Past Global Change Magazine, 2016, 24, 38-38.	0.1	1
52	Uncertainties in isoprene photochemistry and emissions: implications for the oxidative capacity of past and present atmospheres and for climate forcing agents. Atmospheric Chemistry and Physics, 2015, 15, 7977-7998.	4.9	12
53	Forest transitions in Eastern Europe and their effects on carbon budgets. Global Change Biology, 2015, 21, 3049-3061.	9.5	45
54	WETCHIMP-WSL: intercomparison of wetland methane emissions models over West Siberia. Biogeosciences, 2015, 12, 3321-3349.	3.3	81

#	Article	IF	CITATIONS
55	Reconstructing European forest management from 1600 to 2010. Biogeosciences, 2015, 12, 4291-4316.	3.3	144
56	Defining the epoch we live in. Science, 2015, 348, 38-39.	12.6	228
57	The climate of Europe during the Holocene: a gridded pollen-based reconstruction and its multi-proxy evaluation. Quaternary Science Reviews, 2015, 112, 109-127.	3.0	204
58	The age and post-glacial development of the modern European vegetation: a plant functional approach based on pollen data. Vegetation History and Archaeobotany, 2015, 24, 303-317.	2.1	47
59	Sensitivity of global wildfire occurrences to various factors in theÂcontext of global change. Atmospheric Environment, 2015, 121, 86-92.	4.1	53
60	Climate or humans?. Nature Geoscience, 2015, 8, 335-336.	12.9	24
61	Human subsistence and land use in sub-Saharan Africa, 1000BC to AD1500: A review, quantification, and classification. Anthropocene, 2015, 9, 14-32.	3.3	49
62	Maintaining Disturbance-Dependent Habitats. , 2015, , 143-167.		11
63	Causes of Regional Change—Land Cover. Regional Climate Studies, 2015, , 453-477.	1.2	4
64	The influence of atmospheric circulation on the mid-Holocene climate of Europe: a data–model comparison. Climate of the Past, 2014, 10, 1925-1938.	3.4	61
65	Regional climate model simulations for Europe at 6 and 0.2 k BP: sensitivity to changes in anthropogenic deforestation. Climate of the Past, 2014, 10, 661-680.	3.4	68
66	Observational constraints on the distribution, seasonality, and environmental predictors of North American boreal methane emissions. Global Biogeochemical Cycles, 2014, 28, 146-160.	4.9	37
67	Application of a computationally efficient method to approximate gap model results with a probabilistic approach. Geoscientific Model Development, 2014, 7, 1543-1571.	3.6	8
68	Fluvial response to climate variations and anthropogenic perturbations for the Ebro River, Spain in the last 4000 years. Science of the Total Environment, 2014, 473-474, 20-31.	8.0	24
69	Simulating global and local surface temperature changes due to Holocene anthropogenic land cover change. Geophysical Research Letters, 2014, 41, 623-631.	4.0	55
70	Challenges in developing a computationally efficient plant physiological height-class-structured forest model. Ecological Complexity, 2014, 19, 96-110.	2.9	5
71	Climate and CO 2 effects on the vegetation of southern tropical Africa over the last 37,000 years. Earth and Planetary Science Letters, 2014, 403, 407-417.	4.4	17
72	Placing unprecedented recent fir growth in a Europeanâ€wide and Holoceneâ€long context. Frontiers in Ecology and the Environment, 2014, 12, 100-106.	4.0	90

#	Article	IF	CITATIONS
73	Creating spatially continuous maps of past land cover from point estimates: A new statistical approach applied to pollen data. Ecological Complexity, 2014, 20, 127-141.	2.9	31
74	Factors controlling variability in the oxidative capacity of the troposphere since the Last Glacial Maximum. Atmospheric Chemistry and Physics, 2014, 14, 3589-3622.	4.9	92
75	Global emissions of terpenoid VOCs from terrestrial vegetation in the last millennium. Journal of Geophysical Research D: Atmospheres, 2014, 119, 6867-6885.	3.3	64
76	Long-term pan evaporation observations as a resource to understand the water cycle trend: case studies from Australia. Hydrological Sciences Journal, 2013, 58, 1287-1296.	2.6	7
77	The European Modern Pollen Database (EMPD) project. Vegetation History and Archaeobotany, 2013, 22, 521-530.	2.1	101
78	Comparison between reconstructions of global anthropogenic land cover change over past two millennia. Chinese Geographical Science, 2013, 23, 131-146.	3.0	12
79	The effect of abrupt climatic warming on biogeochemical cycling and N2O emissions in a terrestrial ecosystem. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 391, 74-83.	2.3	8
80	Ensemble projections of wildfire activity and carbonaceous aerosol concentrations over the western United States in the mid-21st century. Atmospheric Environment, 2013, 77, 767-780.	4.1	200
81	GAPPARD: a computationally efficient method of approximating gap-scale disturbance in vegetation models. Geoscientific Model Development, 2013, 6, 1517-1542.	3.6	10
82	Exploring potential drivers of <scp>E</scp> uropean biomass burning over the <scp>H</scp> olocene: a dataâ€model analysis. Global Ecology and Biogeography, 2013, 22, 1248-1260.	5.8	48
83	Used planet: A global history. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 7978-7985.	7.1	611
84	WRF-Chem simulations in the Amazon region during wet and dry season transitions: evaluation of methane models and wetland inundation maps. Atmospheric Chemistry and Physics, 2013, 13, 7961-7982.	4.9	33
85	Fire Research: Linking Past, Present, and Future Data. Eos, 2013, 94, 421-422.	0.1	9
86	Present state of global wetland extent and wetland methane modelling: conclusions from a model inter-comparison project (WETCHIMP). Biogeosciences, 2013, 10, 753-788.	3.3	475
87	Present state of global wetland extent and wetland methane modelling: methodology of a model inter-comparison project (WETCHIMP). Geoscientific Model Development, 2013, 6, 617-641.	3.6	165
88	A model for global biomass burning in preindustrial time: LPJ-LMfire (v1.0). Geoscientific Model Development, 2013, 6, 643-685.	3.6	133
89	Short Communication: Humans and the missing C-sink: erosion and burial of soil carbon through time. Earth Surface Dynamics, 2013, 1, 45-52.	2.4	43
90	Dating the Anthropocene: Towards an empirical global history of human transformation of the terrestrial biosphere. Elementa, 2013, 1, .	3.2	39

Jed O Kaplan

#	Article	IF	CITATIONS
91	Impacts of changes in land use and land cover on atmospheric chemistry and air quality over the 21st century. Atmospheric Chemistry and Physics, 2012, 12, 1597-1609.	4.9	135
92	Natural and anthropogenic variations in methane sources during the past two millennia. Nature, 2012, 490, 85-88.	27.8	115
93	Early Anthropogenic Transformation of the Danube-Black Sea System. Scientific Reports, 2012, 2, 582.	3.3	81
94	Flooding of the continental shelves as a contributor to deglacial CH ₄ rise. Journal of Quaternary Science, 2012, 27, 800-806.	2.1	14
95	Preâ€Columbian deforestation as an amplifier of drought in Mesoamerica. Geophysical Research Letters, 2012, 39, .	4.0	59
96	Integrated modeling of Holocene land cover change in Europe. Quaternary International, 2012, 279-280, 235-236.	1.5	1
97	The effects of land use and climate change on the carbon cycle of <scp>E</scp> urope over the past 500Âyears. Global Change Biology, 2012, 18, 902-914.	9.5	102
98	The midâ€Holocene vegetation of the Mediterranean region and southern Europe, and comparison with the present day. Journal of Biogeography, 2012, 39, 1848-1861.	3.0	46
99	2500 Years of European Climate Variability and Human Susceptibility. Science, 2011, 331, 578-582.	12.6	1,154
100	The El Niño-Southern Oscillation and wetland methane interannual variability. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	89
101	Holocene carbon emissions as a result of anthropogenic land cover change. Holocene, 2011, 21, 775-791.	1.7	452
102	Modelling prehistoric land use and carbon budgets. Holocene, 2011, 21, 715-722.	1.7	37
103	Magnitude and seasonality of wetland methane emissions from the Hudson Bay Lowlands (Canada). Atmospheric Chemistry and Physics, 2011, 11, 3773-3779.	4.9	101
104	Could anthropogenic soil erosion have influenced Mediterranean vegetation distribution over the Holocene?. IOP Conference Series: Earth and Environmental Science, 2010, 9, 012011.	0.3	3
105	Holocene land-cover reconstructions for studies on land cover-climate feedbacks. Climate of the Past, 2010, 6, 483-499.	3.4	214
106	Atmospheric constraints on 2004 emissions of methane and nitrous oxide in North America from atmospheric measurements and a receptor-oriented modeling framework. Journal of Integrative Environmental Sciences, 2010, 7, 125-133.	2.5	20
107	Response of terrestrial N2O and NOxemissions to abrupt climate change. IOP Conference Series: Earth and Environmental Science, 2010, 9, 012001.	0.3	3
108	Recent Changes in Arctic Vegetation: Satellite Observations and Simulation Model Predictions. , 2010, , 9-36.		14

#	Article	IF	CITATIONS
109	Cumulative Effects of Rapid Land-Cover and Land-Use Changes on the Yamal Peninsula, Russia. , 2010, , 207-236.		15
110	Spatial and temporal patterns of greenness on the Yamal Peninsula, Russia: interactions of ecological and social factors affecting the Arctic normalized difference vegetation index. Environmental Research Letters, 2009, 4, 045004.	5.2	79
111	The prehistoric and preindustrial deforestation of Europe. Quaternary Science Reviews, 2009, 28, 3016-3034.	3.0	703
112	Late Quaternary-Holocene Vegetation Modeling. Encyclopedia of Earth Sciences Series, 2009, , 507-514.	0.1	1
113	A pilot study on pollen representation of mountain valley vegetation in the central Alps. Review of Palaeobotany and Palynology, 2008, 149, 208-218.	1.5	20
114	Variations in leaf area index in northern and eastern North America over the past 21,000 years: a data-model comparison. Quaternary Science Reviews, 2008, 27, 1453-1466.	3.0	17
115	Mid- to Late Holocene climate change: an overview. Quaternary Science Reviews, 2008, 27, 1791-1828.	3.0	1,389
116	Emissions of CH ₄ and N ₂ O over the United States and Canada based on a receptorâ€oriented modeling framework and COBRAâ€NA atmospheric observations. Geophysical Research Letters, 2008, 35, .	4.0	132
117	Simulating Future Changes in Arctic and Subarctic Vegetation. Computing in Science and Engineering, 2007, 9, 12-23.	1.2	43
118	Satellite chartography of atmospheric methane from SCIAMACHY on board ENVISAT: 2. Evaluation based on inverse model simulations. Journal of Geophysical Research, 2007, 112, .	3.3	263
119	Leaf area index for northern and eastern North America at the Last Glacial Maximum: a data?model comparison. Global Ecology and Biogeography, 2007, 17, 070817112457003-???.	5.8	9
120	Role of methane and biogenic volatile organic compound sources in late glacial and Holocene fluctuations of atmospheric methane concentrations. Global Biogeochemical Cycles, 2006, 20, n/a-n/a.	4.9	118
121	Carbon storage on exposed continental shelves during the glacial-interglacial transition. Geophysical Research Letters, 2006, 33, .	4.0	18
122	Arctic climate change with a 2 â ^{~-} C global warming: Timing, climate patterns and vegetation change. Climatic Change, 2006, 79, 213-241.	3.6	138
123	Using a biogeochemistry model in simulating forests productivity responses to climatic change and [CO2] increase: example of Pinus halepensis in Provence (south-east France). Ecological Modelling, 2003, 166, 239-255.	2.5	40
124	Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Global Change Biology, 2003, 9, 161-185.	9.5	2,681
125	Climate and interannual variability of the atmosphere-biosphere13CO2flux. Geophysical Research Letters, 2003, 30, .	4.0	76
126	Climate change and Arctic ecosystems: 1. Vegetation changes north of 55°N between the last glacial maximum, mid-Holocene, and present. Journal of Geophysical Research, 2003, 108, .	3.3	261

#	Article	IF	CITATIONS
127	Climate change and Arctic ecosystems: 2. Modeling, paleodata-model comparisons, and future projections. Journal of Geophysical Research, 2003, 108, .	3.3	429
128	Implications of coral reef buildup for the controls on atmospheric CO2since the Last Glacial Maximum. Paleoceanography, 2003, 18, n/a-n/a.	3.0	90
129	The application and interpretation of Keeling plots in terrestrial carbon cycle research. Global Biogeochemical Cycles, 2003, 17, .	4.9	536
130	Modeling the dynamics of terrestrial carbon storage since the Last Glacial Maximum. Geophysical Research Letters, 2002, 29, 31-1-31-4.	4.0	83
131	Antarctic climate during the middle Pliocene: model sensitivity to ice sheet variation. Palaeogeography, Palaeoclimatology, Palaeoecology, 2002, 182, 93-115.	2.3	27
132	The stable carbon isotope composition of the terrestrial biosphere: Modeling at scales from the leaf to the globe. Global Biogeochemical Cycles, 2002, 16, 8-1-8-11.	4.9	80
133	Evaluation of terrestrial carbon cycle models with atmospheric CO2measurements: Results from transient simulations considering increasing CO2, climate, and land-use effects. Global Biogeochemical Cycles, 2002, 16, 39-1-39-15.	4.9	79
134	Wetlands at the Last Glacial Maximum: Distribution and methane emissions. Geophysical Research Letters, 2002, 29, 3-1-3-4.	4.0	142
135	Biospheric carbon stocks reconstructed at the Last Glacial Maximum: comparison between general circulation models using prescribed and computed sea surface temperatures. Global and Planetary Change, 2002, 33, 117-138.	3.5	76
136	Carbon balance of the terrestrial biosphere in the Twentieth Century: Analyses of CO2, climate and land use effects with four process-based ecosystem models. Global Biogeochemical Cycles, 2001, 15, 183-206.	4.9	680
137	Carbon Isotope Discrimination of Terrestrial Ecosystems — How Well Do Observed and Modeled Results Match?. , 2001, , 253-266.		11
138	Trace gas exchange in a high-Arctic valley: 1. Variationsin CO2and CH4Flux between tundra vegetation types. Global Biogeochemical Cycles, 2000, 14, 701-713.	4.9	143
139	A continuous Late Glacial and Holocene record of vegetation changes in Kazakhstan. Palaeogeography, Palaeoclimatology, Palaeoecology, 1997, 136, 281-292.	2.3	81
140	Methane flux from northern wetlands and tundra. An ecosystem source modelling approach. Tellus, Series B: Chemical and Physical Meteorology, 1996, 48, 652-661.	1.6	84
141	Environmental Change in the Temperate Grasslands andSteppe. , 0, , 215-244.		2
142	Short Communication: Humans and the missing C-sink: erosion and burial of soil carbon through		4