Mark Geoghegan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2356006/publications.pdf

Version: 2024-02-01

147566 149479 3,736 117 31 56 citations g-index h-index papers 124 124 124 4918 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Weak polyelectrolyte brushes. Soft Matter, 2022, 18, 2500-2511.	1.2	12
2	Optical Gain in Semiconducting Polymer Nano and Mesoparticles. Molecules, 2021, 26, 1138.	1.7	0
3	Lateral diffusion of single poly(ethylene oxide) chains on the surfaces of glassy and molten polymer films. Journal of Chemical Physics, 2021, 154, 164902.	1.2	1
4	Combined specular and off-specular reflectometry: elucidating the complex structure of soft buried interfaces. Journal of Applied Crystallography, 2021, 54, 924-948.	1.9	11
5	2D reflectometry for the investigation of polymer interfaces: off-specular neutron scattering. Journal of Physics Condensed Matter, 2021, 33, 364002.	0.7	3
6	The Role of Extracellular DNA in Microbial Attachment to Oxidized Silicon Surfaces in the Presence of Ca ²⁺ and Na ⁺ . Langmuir, 2021, 37, 9838-9850.	1.6	6
7	Sustainable Team Design: A Challenge to Traditional Beliefs in Information-Intensive Service Industries. Sustainability, 2021, 13, 13552.	1.6	O
8	Adhesion of Grafted-to Polyelectrolyte Brushes Functionalized with Calix[4]resorcinarene and Deposited as a Monolayer. Langmuir, 2020, 36, 13843-13852.	1.6	4
9	Glycan–glycan interactions determine Leishmania attachment to the midgut of permissive sand fly vectors. Chemical Science, 2020, 11, 10973-10983.	3.7	4
10	Adhesion between oppositely charged polyelectrolytes in salt solution. Journal of Applied Polymer Science, 2020, 137, 49130.	1.3	11
11	Distinct Binding Interactions of $\hat{l}\pm5\hat{l}^21$ -Integrin and Proteoglycans with Fibronectin. Biophysical Journal, 2019, 117, 688-695.	0.2	14
12	Size-Dependent Photophysical Behavior of Low Bandgap Semiconducting Polymer Particles. Frontiers in Chemistry, 2019, 7, 409.	1.8	4
13	Application of mean-field theory to the spin casting of polystyrene and poly(methyl methacrylate) blend films from toluene. Polymer, 2019, 178, 121578.	1.8	2
14	Extracellular DNA Provides Structural Integrity to a <i>Micrococcus luteus</i> Biofilm. Langmuir, 2019, 35, 6468-6475.	1.6	22
15	Slow polymer diffusion on brush-patterned surfaces in aqueous solution. Nanoscale, 2019, 11, 6052-6061.	2.8	3
16	Salt Dependence of the Tribological Properties of a Surface-Grafted Weak Polycation in Aqueous Solution. Tribology Letters, 2018, 66, 11.	1.2	11
17	Temperature-dependent structure and dynamics of highly-branched poly(<i>N</i> -isopropylacrylamide) in aqueous solution. Soft Matter, 2018, 14, 1482-1491.	1.2	6
18	Polymers and biopolymers at interfaces. Reports on Progress in Physics, 2018, 81, 036601.	8.1	26

#	Article	IF	Citations
19	Adhesion between oppositely charged polyelectrolytes. Journal of Adhesion, 2018, 94, 58-76.	1.8	6
20	Highly-ordered onion micelles made from amphiphilic highly-branched copolymers. Polymer Chemistry, 2018, 9, 5617-5629.	1.9	3
21	Blob Size Controls Diffusion of Free Polymer in a Chemically Identical Brush in Semidilute Solution. Macromolecules, 2018, 51, 6312-6317.	2.2	5
22	Nanotribological Investigation of Polymer Brushes with Lithographically Defined and Systematically Varying Grafting Densities. Langmuir, 2017, 33, 706-713.	1.6	6
23	The swelling of weak polyelectrolytes at low salt concentrations in dilute solution. Polymer, 2017, 112, 414-417.	1.8	5
24	From spin coating to rollâ€toâ€roll: investigating the challenge of upscaling lead halide perovskite solar cells. IET Renewable Power Generation, 2017, 11, 546-549.	1.7	25
25	Influence of salt on the solution dynamics of a phosphorylcholine-based polyzwitterion. European Polymer Journal, 2017, 87, 449-457.	2.6	12
26	Polymer Surfaces: Segregation., 2016,,.		1
27	Effect of Salt on Phosphorylcholine-based Zwitterionic Polymer Brushes. Langmuir, 2016, 32, 5048-5057.	1.6	73
28	Double-network hydrogels improve pH-switchable adhesion. Soft Matter, 2016, 12, 5022-5028.	1.2	24
29	The Substrate is a pH-Controlled Second Gate of Electrolyte-Gated Organic Field-Effect Transistor. ACS Applied Materials & Diterfaces, 2016, 8, 31783-31790.	4.0	17
30	The pH-responsive behaviour of poly(acrylic acid) in aqueous solution is dependent on molar mass. Soft Matter, 2016, 12, 2542-2549.	1.2	297
31	Characterization of Diblock Copolymer Order-Order Transitions in Semidilute Aqueous Solution Using Fluorescence Correlation Spectroscopy. Macromolecular Rapid Communications, 2015, 36, 1572-1577.	2.0	13
32	Determination of the molar mass of surface-grafted weak polyelectrolyte brushes using force spectroscopy. Polymer, 2015, 67, 111-117.	1.8	13
33	Measurement of molecular mixing at a conjugated polymer interface by specular and off-specular neutron scattering. Soft Matter, 2015, 11, 9393-9403.	1.2	8
34	Nanoscale Contact Mechanics between Two Grafted Polyelectrolyte Surfaces. Macromolecules, 2015, 48, 6272-6279.	2.2	29
35	Effect of extracellular polymeric substances on the mechanical properties of Rhodococcus. Biochimica Et Biophysica Acta - Biomembranes, 2015, 1848, 518-526.	1.4	25
36	Dynamics of polymer film formation during spin coating. Journal of Applied Physics, 2014, 116, .	1.1	44

3

#	Article	lF	CITATIONS
37	Frictional properties of a polycationic brush. Soft Matter, 2014, 10, 2759.	1.2	21
38	Reduced curvilinear velocity of boar sperm on substrates with increased hydrophobicity. Theriogenology, 2014, 81, 764-769.	0.9	0
39	Nanoscale Contact Mechanics of Biocompatible Polyzwitterionic Brushes. Langmuir, 2013, 29, 10684-10692.	1.6	32
40	All-polymer field-effect transistors using a brush gate dielectric. Journal of Materials Chemistry C, 2013, 1, 7736.	2.7	7
41	Crystallization-Driven Enhancement in Photovoltaic Performance through Block Copolymer Incorporation into P3HT:PCBM Blends. Macromolecules, 2013, 46, 3015-3024.	2.2	38
42	Phase separation-driven stratification in conventional and inverted P3HT:PCBM organic solar cells. Organic Electronics, 2013, 14, 1249-1254.	1.4	31
43	The mechanics of nanometre-scale molecular contacts. Faraday Discussions, 2012, 156, 325.	1.6	15
44	Symmetric and asymmetric instability of buried polymer interfaces. Physical Review E, 2012, 86, 032801.	0.8	8
45	Diffusion of dextran within poly(methacrylic acid) hydrogels. Journal of Polymer Science, Part B: Polymer Physics, 2012, 50, 1286-1292.	2.4	10
46	Structure of films of poly(3,4-ethylene dioxythiophene)-poly(styrene sulfonate) crosslinked with glycerol. Journal of Materials Chemistry, 2011, 21, 19324.	6.7	12
47	Effect of Brush Thickness and Solvent Composition on the Friction Force Response of Poly(2-(methacryloyloxy)ethylphosphorylcholine) Brushes. Langmuir, 2011, 27, 2514-2521.	1.6	74
48	Optimization of the Bulk Heterojunction Composition for Enhanced Photovoltaic Properties: Correlation between the Molecular Weight of the Semiconducting Polymer and Device Performance. Journal of Physical Chemistry B, 2011, 115, 12717-12727.	1.2	55
49	The influence of directed π–π interactions in solution on the thin film organic semiconductor device properties of small molecule polymer blends. Soft Matter, 2011, 7, 7065.	1.2	14
50	Contact Mechanics of Nanometer-Scale Molecular Contacts: Correlation between Adhesion, Friction, and Hydrogen Bond Thermodynamics. Journal of the American Chemical Society, 2011, 133, 8625-8632.	6.6	30
51	Single Macromolecule Diffusion in Confined Environments. Macromolecular Rapid Communications, 2011, 32, 1411-1418.	2.0	7
52	Magnetic field dependence of the diffusion of single dextran molecules within a hydrogel containing magnetite nanoparticles. Journal of Chemical Physics, 2011, 134, 094901.	1.2	14
53	Quantitative evaluation of evaporation rate during spin-coating of polymer blend films: Control of film structure through defined-atmosphere solvent-casting. European Physical Journal E, 2010, 33, 283-289.	0.7	77
54	Adhesive and conformational behaviour of mycolic acid monolayers. Biochimica Et Biophysica Acta - Biomembranes, 2010, 1798, 1829-1839.	1.4	14

#	Article	IF	CITATIONS
55	Observation of the complete rupture of a buried polymer layer by off-specular neutron reflectometry. Europhysics Letters, 2009, 86, 36005.	0.7	8
56	The Impact of Interfacial Mixing on FÃ \P rster Transfer at Conjugated Polymer Heterojunctions. Advanced Functional Materials, 2009, 19, 157-163.	7.8	22
57	Synthesis, characterization and swelling behaviour of poly(methacrylic acid) brushes synthesized using atom transfer radical polymerization. Polymer, 2009, 50, 1005-1014.	1.8	76
58	Creation of dense polymer brush layers by the controlled deposition of an amphiphilic responsive comb polymer. Polymer, 2009, 50, 4829-4836.	1.8	14
59	Composition depth profiling of polystyrene/poly(vinyl ethyl ether) blend thin films by angle resolved XPS. Journal of Electron Spectroscopy and Related Phenomena, 2009, 171, 57-63.	0.8	6
60	Directed Single Molecule Diffusion Triggered by Surface Energy Gradients. ACS Nano, 2009, 3, 3235-3243.	7.3	38
61	Organic Semiconductor-Polymer Insulator Blends: a Morphological Study of the Guest-Host Interactions. E-Journal of Surface Science and Nanotechnology, 2009, 7, 455-458.	0.1	3
62	Organic Thin Film Transistors with Polymer Brush Gate Dielectrics Synthesized by Atom Transfer Radical Polymerization. Advanced Functional Materials, 2008, 18, 36-43.	7.8	51
63	The interfacial behaviour of single poly(N,N-dimethylacrylamide) chains as a function of pH. Nanotechnology, 2008, 19, 035505.	1.3	12
64	Organic field effect transistors from ambient solution processed low molar mass semiconductor–insulator blends. Journal of Materials Chemistry, 2008, 18, 3230.	6.7	116
65	The polymer physics and chemistry of microbial cell attachment and adhesion. Faraday Discussions, 2008, 139, 85.	1.6	59
66	Control of roughness at interfaces and the impact on charge mobility in all-polymer field-effect transistors. Soft Matter, 2008, 4, 2220.	1.2	29
67	Conformation of Poly(methacrylic acid) Chains in Dilute Aqueous Solution. Macromolecules, 2008, 41, 2203-2211.	2.2	85
68	Switching Layer Stability in a Polymer Bilayer by Thickness Variation. Physical Review Letters, 2007, 98, 267802.	2.9	70
69	Generation of Molecular-Scale Compositional Gradients in Self-Assembled Monolayers. Nano Letters, 2007, 7, 3747-3752.	4.5	22
70	Thermally responsive polymeric hydrogel brushes: synthesis, physical properties and use for the culture of chondrocytes. Journal of the Royal Society Interface, 2007, 4, 117-126.	1.5	45
71	Controlling Network–Brush Interactions to Achieve Switchable Adhesion. Angewandte Chemie - International Edition, 2007, 46, 6460-6463.	7.2	67
72	Avantages de la réflectométrie des neutrons pour l'étude des polymères en couches minces. École Thématique De La Société Française De La Neutronique, 2007, 12, 103-113.	0.2	1

#	Article	IF	CITATIONS
73	The pH-induced swelling and collapse of a polybase brush synthesized by atom transfer radical polymerization. Soft Matter, 2006, 2, 1076-1080.	1.2	53
74	Interfacial Structure in Conjugated Polymers:Â Characterization and Control of the Interface between Poly(9,9-dioctylfluorene) and Poly(9,9-dioctylfluorene-alt-benzothiadiazole). Macromolecules, 2006, 39, 6699-6707.	2.2	18
75	Controlled growth of poly (2-(diethylamino)ethyl methacrylate) brushes via atom transfer radical polymerisation on planar silicon surfaces. Polymer International, 2006, 55, 808-815.	1.6	24
76	Generic Methodologies for Nanotechnology: Classification and Fabrication. , 2005, , 1-55.		5
77	Processing and Properties of Inorganic Nanomaterials. , 2005, , 237-281.		1
78	Macromolecules at Interfaces and Structured Organic Films. , 2005, , 377-418.		1
79	Bionanotechnology., 2005,, 419-445.		0
80	The interplay between the optical and electronic properties of light-emitting-diode applicable conjugated polymer blends and their phase-separated morphology. Organic Electronics, 2005, 6, 35-45.	1.4	53
81	Block copolymer adsorption from a homopolymer melt to an amine-terminated surface. European Physical Journal E, 2005, 18, 159-166.	0.7	7
82	Thin polymer films on chemically patterned, corrugated substrates. Journal of Physics Condensed Matter, 2005, 17, S389-S402.	0.7	19
83	Surface segregation and self-stratification in blends of spin-cast polyfluorene derivatives. Journal of Physics Condensed Matter, 2005, 17, 1319-1328.	0.7	51
84	Current-induced chain migration in semiconductor polymer blends. Physical Review B, 2005, 71, .	1.1	19
85	Inorganic Semiconductor Nanostructures. , 2005, , 130-202.		1
86	Nanomagnetic Materials and Devices. , 2005, , 203-236.		1
87	Electronic and Electro-Optic Molecular Materials and Devices. , 2005, , 282-342.		4
88	Self-Assembling Nanostructured Molecular Materials and Devices., 2005,, 343-376.		2
89	Kinetics of Surface Crystallization in Thin Films of Poly(ethylene terephthalate). Macromolecules, 2005, 38, 2315-2320.	2.2	51
90	Responsive brushes and gels as components of soft nanotechnology. Faraday Discussions, 2005, 128, 55-74.	1.6	90

#	Article	IF	Citations
91	Mechanical Actuation by Responsive Polyelectrolyte Brushes and Triblock Gels. Journal of Macromolecular Science - Physics, 2005, 44, 1103-1121.	0.4	28
92	Generic Methodologies for Nanotechnology: Characterization., 2005,, 56-129.		1
93	Structural features in aligned poly(3-alkylthiophene) films revealed by grazing incidence X-ray diffraction. Polymer, 2004, 45, 4133-4138.	1.8	18
94	Controlling the Surface Composition of Poly(3,4-ethylene dioxythiophene)–Poly(styrene sulfonate) Blends by Heat Treatment. Advanced Materials, 2004, 16, 807-811.	11.1	52
95	Applications of grazing incidence diffraction to polymer surfaces. Radiation Physics and Chemistry, 2004, 71, 811-815.	1.4	10
96	Wetting at polymer surfaces and interfaces. Progress in Polymer Science, 2003, 28, 261-302.	11.8	392
97	Correlating structure with fluorescence emission in phase-separated conjugated-polymer blends. Nature Materials, 2003, 2, 616-621.	13.3	178
98	Block Copolymer Adsorption from a Homopolymer Melt to Silicon Oxide:  Effects of Nonadsorbing Block Length and Anchoring Blockâ~Substrate Interaction. Macromolecules, 2003, 36, 9897-9904.	2.2	28
99	Equilibrium Swelling of Polystyrene Networks by Linear Polystyrene. Macromolecules, 2003, 36, 127-141.	2.2	26
100	Interfacial structure in semiconducting polymer devices. Journal of Materials Chemistry, 2003, 13, 2814-2818.	6.7	50
101	A neutron reflectometry study of the interface between poly(9,9-dioctylfluorene) and poly(methyl) Tj ETQq $1\ 1\ 0$.	784314 rş	gBT/Overloc
102	Scaling model for the anomalous swelling of polymer networks in a polymer solvent. Europhysics Letters, 2002, 57, 32-38.	0.7	13
103	Dewetting at a Polymerâ-'Polymer Interface:Â Film Thickness Dependence. Langmuir, 2001, 17, 6269-6274.	1.6	81
104	Thermodynamic Suppression of Brownian Motion. Physical Review Letters, 2001, 86, 2581-2584.	2.9	2
105	Surface segregation from polystyrene networks. Journal of Physics Condensed Matter, 2000, 12, 5129-5142.	0.7	12
106	Wetting in a phase separating polymer blend film:â€fQuench depth dependence. Physical Review E, 2000, 62, 940-950.	0.8	60
107	Interdiffusion in blends of deuterated polystyrene and poly($\hat{l}\pm$ -methylstyrene). Polymer, 1999, 40, 2323-2329.	1.8	20
108	High resolution elastic recoil detection analysis of polystyrene depth profiles using carbon ions. Nuclear Instruments & Methods in Physics Research B, 1998, 143, 371-380.	0.6	12

#	Article	IF	Citations
109	Tracer diffusion of deuterated polystyrene into polystyrene–poly(α-methyl styrene) studied by nuclear reaction analysis. Polymer, 1998, 39, 3623-3629.	1.8	7
110	Kinetics of Surface Segregation and the Approach to Wetting in an Isotopic Polymer Blend. Macromolecules, 1997, 30, 4220-4227.	2.2	34
111	Experimental study of surface segregation and wetting in films of a partially miscible polymer blend. Physical Review E, 1996, 53, 825-837.	0.8	32
112	The morphology of as-cast films of a polymer blend: Dependence on polymer molecular weight. Journal of Polymer Science, Part B: Polymer Physics, 1995, 33, 1307-1311.	2.4	20
113	Surface directed spinodal decomposition in a partially miscible polymer blend. Journal of Chemical Physics, 1995, 103, 2719-2724.	1.2	60
114	Lamellar structure in a thin polymer blend film. Polymer, 1994, 35, 2019-2027.	1.8	57
115	Linear Polymers in Networks: Swelling, Diffusion, and Interdigitation. , 0, , 29-44.		2
116	The self assembly of polymer films. , 0, , 134-148.		0
117	Block Copolymers at Interfaces. , 0, , 275-290.		0