Satoshi Waguri

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2355993/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Loss of <i>Atg2b</i> and <i>Gskip</i> Impairs the Maintenance of the Hematopoietic Stem Cell Pool Size. Molecular and Cellular Biology, 2022, 42, MCB0002421.	2.3	3
2	Homeostatic regulation of STING by retrograde membrane traffic to the ER. Nature Communications, 2021, 12, 61.	12.8	80
3	p62/SQSTM1-droplet serves as a platform for autophagosome formation and anti-oxidative stress response. Nature Communications, 2021, 12, 16.	12.8	137
4	Arf GTPase-activating proteins SMAP1 and AGFG2 regulate the size of Weibel-Palade bodies and exocytosis of von Willebrand factor. Biology Open, 2021, 10, .	1.2	4
5	Clathrin adapters AP-1 and GGA2 support expression of epidermal growth factor receptor for cell growth. Oncogenesis, 2021, 10, 80.	4.9	9
6	Emerging roles of Golgi/endosome-localizing monomeric clathrin adaptors GGAs. Anatomical Science International, 2020, 95, 12-21.	1.0	13
7	<scp>NBR</scp> 1â€mediated p62â€liquid droplets enhance the Keap1â€Nrf2 system. EMBO Reports, 2020, 21, e48902.	4.5	107
8	Autophagy is involved in the sclerotic phase of systemic sclerosis. Fukushima Journal of Medical Sciences, 2020, 66, 17-24.	0.4	3
9	Hyperosmotic Stress Induces Unconventional Autophagy Independent of the Ulk1 Complex. Molecular and Cellular Biology, 2019, 39, .	2.3	10
10	Improved Electron Microscopy Fixation Methods for Tracking Autophagy-Associated Membranes in Cultured Mammalian Cells. Methods in Molecular Biology, 2019, 1880, 211-221.	0.9	16
11	GGA2 interacts with EGFR cytoplasmic domain to stabilize the receptor expression and promote cell growth. Scientific Reports, 2018, 8, 1368.	3.3	23
12	Clathrin adaptor GGA1 modulates myogenesis of C2C12 myoblasts. PLoS ONE, 2018, 13, e0207533.	2.5	7
13	Establishment and Characterization of a Novel Human Clear-cell Sarcoma of Soft-tissue Cell Line, RSAR001, Derived from Pleural Effusion of a Patient with Pleural Dissemination. Anticancer Research, 2018, 38, 5035-5042.	1.1	3
14	Spatiotemporal alterations of autophagy marker LC3 in rat skin fibroblasts during wound healing process. Fukushima Journal of Medical Sciences, 2018, 64, 15-22.	0.4	15
15	Intracellular localization of GGA accessory protein p56 in cell lines and central nervous system neurons . Biomedical Research, 2018, 39, 179-187.	0.9	6
16	HMGB1 promotes ductular reaction and tumorigenesis in autophagy-deficient livers. Journal of Clinical Investigation, 2018, 128, 2419-2435.	8.2	85
17	LC3-positive puncta increase in skeletal muscle of patient-derived xenograft mice. Japanese Journal of Physical Fitness and Sports Medicine, 2018, 67, 99-105.	0.0	0
18	Autocrine and Paracrine Interactions between Multiple Myeloma Cells and Bone Marrow Stromal Cells by Growth Arrest-specific Gene 6 Cross-talk with Interleukin-6. Journal of Biological Chemistry, 2017, 292, 4280-4292.	3.4	27

SATOSHI WAGURI

#	Article	IF	CITATIONS
19	Metastasis of breast cancer cells to the bone, lung, and lymph nodes promotes resistance to ionizing radiation. Strahlentherapie Und Onkologie, 2017, 193, 848-855.	2.0	13
20	A novel gene expression scoring system for accurate diagnosis of basaloid squamous cell carcinoma of the esophagus. International Journal of Oncology, 2017, 51, 877-886.	3.3	8
21	Activation of STING requires palmitoylation at the Golgi. Nature Communications, 2016, 7, 11932.	12.8	436
22	p62/Sqstm1 promotes malignancy of HCV-positive hepatocellular carcinoma through Nrf2-dependent metabolic reprogramming. Nature Communications, 2016, 7, 12030.	12.8	253
23	Autocrine and Paracrine Interactions Between Multiple Myeloma Cells and Bone Marrow Stromal Cells By Growth Arrest-Specific Gene 6 Crosstalk with Interleukin-6. Blood, 2016, 128, 5606-5606.	1.4	Ο
24	FAM83B is a novel biomarker for diagnosis and prognosis of lung squamous cell carcinoma. International Journal of Oncology, 2015, 46, 999-1006.	3.3	47
25	Mon1-Ccz1 activates Rab7 only on late endosome and dissociates from lysosome in mammalian cells. Journal of Cell Science, 2015, 129, 329-40.	2.0	39
26	Sqstm1-GFP knock-in mice reveal dynamic actions of Sqstm1 during autophagy and under stress conditions in living cells. Journal of Cell Science, 2015, 128, 4453-61.	2.0	9
27	Autocrine and Paracrine Regulatory Mechanisms of Growth Arrest-Specific Gene 6 Contribute to Disease Progression of Multiple Myeloma. Blood, 2015, 126, 4179-4179.	1.4	0
28	A Cluster of Thin Tubular Structures Mediates Transformation of the Endoplasmic Reticulum to Autophagic Isolation Membrane. Molecular and Cellular Biology, 2014, 34, 1695-1706.	2.3	116
29	Somatic 15q Break After Long-Term Stable Disease in Acute Myeloid Leukemia. Clinical Lymphoma, Myeloma and Leukemia, 2014, 14, e69-e72.	0.4	0
30	ArfGAP3 Regulates the Transport of Cation-Independent Mannose 6-Phosphate Receptor in the Post-Golgi Compartment. Current Biology, 2013, 23, 1945-1951.	3.9	21
31	Phosphorylation of p62 Activates the Keap1-Nrf2 Pathway during Selective Autophagy. Molecular Cell, 2013, 51, 618-631.	9.7	880
32	Visualization of TGN-Endosome Trafficking in Mammalian and Drosophila Cells. Methods in Enzymology, 2012, 504, 255-271.	1.0	3
33	Persistent activation of Nrf2 through p62 in hepatocellular carcinoma cells. Journal of Cell Biology, 2011, 193, 275-284.	5.2	520
34	Autophagy-deficient mice develop multiple liver tumors. Genes and Development, 2011, 25, 795-800.	5.9	1,094
35	2P012 Solution structural analysis of Drosophila GGA(The 48th Annual Meeting of the Biophysical) Tj ETQq1 1 C).784314 r 0.1	gBT /Overlock
36	The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2	10.3	1,933

through inactivation of Keap1. Nature Cell Biology, 2010, 12, 213-223.

١,

SATOSHI WAGURI

#	Article	IF	CITATIONS
37	Three Homologous ArfGAPs Participate in Coat Protein I-mediated Transport. Journal of Biological Chemistry, 2009, 284, 13948-13957.	3.4	34
38	Chapter 9 Biochemical and Morphological Detection of Inclusion Bodies in Autophagyâ€Deficient Mice. Methods in Enzymology, 2009, 453, 181-196.	1.0	39
39	Homeostatic Levels of p62 Control Cytoplasmic Inclusion Body Formation in Autophagy-Deficient Mice. Cell, 2007, 131, 1149-1163.	28.9	1,925
40	The luminal domain participates in the endosomal trafficking of the cation-independent mannose 6-phosphate receptor. Experimental Cell Research, 2006, 312, 4090-4107.	2.6	14
41	Impairment of starvation-induced and constitutive autophagy in <i>Atg7</i> -deficient mice. Journal of Cell Biology, 2005, 169, 425-434.	5.2	2,180
42	Early-phase redistribution of the cation-independent mannose 6-phosphate receptor by U18666A treatment in HeLa cells. Cell and Tissue Research, 2004, 317, 253-64.	2.9	13
43	Visualization of TGN to Endosome Trafficking through Fluorescently Labeled MPR and AP-1 in Living Cells. Molecular Biology of the Cell, 2003, 14, 142-155.	2.1	171
44	Neuronal differentiation of PC12 cells as a result of prevention of cell death bybcl-2. Journal of Neurobiology, 1994, 25, 1227-1234.	3.6	63