Yuriy Stepanenko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2355867/publications.pdf

Version: 2024-02-01

304743 233421 2,043 75 22 45 citations h-index g-index papers 76 76 76 2387 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	First events in the coil-to-globule transition of PVME in water: An ultrafast temperature jump – time-resolved elastic light scattering study. Journal of Colloid and Interface Science, 2022, 608, 2018-2024.	9.4	2
2	Studying the Operation of an All-PM Yb-Doped Fiber Laser Oscillator at Negative and Positive Net Cavity Dispersion. IEEE Access, 2022, 10, 45689-45694.	4.2	7
3	Realâ€Time Observation of Doubleâ€Hopf Bifurcation in an Ultrafast Allâ€PM Fiber Laser. Laser and Photonics Reviews, 2022, 16, .	8.7	13
4	Mamyshev Oscillator With a Widely Tunable Repetition Rate. Journal of Lightwave Technology, 2021, 39, 574-581.	4.6	16
5	Understanding of ultrafast breathing-like dynamics in Ytterbium-doped fiber laser. , 2021, , .		О
6	Breathing dynamics in an ultrafast all-PM Yb-doped fiber laser. , 2021, , .		1
7	12 nJ, 250 fs pulses from an all-PM-fiber laser oscillator. , 2021, , .		1
8	Ultrasensitive SERS platform made via femtosecond laser micromachining for biomedical applications. Journal of Materials Research and Technology, 2021, 12, 1496-1507.	5.8	28
9	Energy Scaling of an Ultrafast All-PM-Fiber Laser Oscillator. IEEE Access, 2020, 8, 145087-145091.	4.2	13
10	Soliton detuning of 685  THz in the near-infrared in a highly nonlinear suspended core tellurite fiber. Journal of the Optical Society of America B: Optical Physics, 2020, 37, 1502.	2.1	7
11	Raman-induced pulse destabilization and bistability in an all-normal dispersion oscillator. Optics Letters, 2020, 45, 1563.	3.3	9
12	Femtosecond pulse delivery around 1560 nm in large-core anti-resonant fibers. , 2020, , .		0
13	Tunable repetition rate in all PM-Fiber Mamyshev Oscillator. , 2020, , .		0
14	Stable Harmonic Mode Locking in all PM-Fiber Mamyshev Oscillator. , 2020, , .		1
15	Low noise, self-referenced all polarization maintaining Ytterbium fiber laser frequency comb: erratum. Optics Express, 2020, 28, 37600.	3.4	О
16	Direct Observation of Intracavity Pulse Dynamics in All-Normal Dispersion All-Fiber Oscillator. , 2019, , .		0
17	96 fs All-Fiber Polarization Maintaining Thulium Doped Amplifier Seeded by Coherent Supercontinuum. , 2019, , .		O
18	Diverse nature of femtosecond laser ablation of poly(L-lactide) and the influence of filamentation on the polymer crystallization behaviour. Scientific Reports, 2019, 9, 3069.	3.3	7

#	Article	IF	Citations
19	Fiber oscillator mode-locked using a novel scheme for Nonlinear Polarization Evolution in Polarization Maintaining fibers. , $2019, \ldots$		1
20	Femtosecond pulse delivery around 1560  nm in large-core inhibited-coupling fibers. Journal of the Optical Society of America B: Optical Physics, 2019, 36, 3030.	2.1	5
21	Nonlinear refractive index measurement by SPM-induced phase regression. Optics Express, 2019, 27, 11018.	3.4	40
22	Ultra low-noise coherent supercontinuum amplification and compression below 100 fs in an all-fiber polarization-maintaining thulium fiber amplifier. Optics Express, 2019, 27, 35041.	3.4	34
23	All-fiber polarization maintaining Thulium doped amplifier seeded by coherent polarized supercontinuum. , 2019, , .		0
24	Noncollinear and nonlinear pulse propagation. Scientific Reports, 2018, 8, 14350.	3.3	6
25	Nonlinear polarization evolution of ultrashort pulses in polarization maintaining fibers. Optics Express, 2018, 26, 13590.	3.4	51
26	Modelling noncollinear 3D pulse propagation (Conference Presentation)., 2018,,.		0
27	Study on parameters of fiber loop mirrors as artificial saturable absorbers. Proceedings of SPIE, 2017,	0.8	3
28	Influence of the excitation light intensity on the rate of fluorescence quenching reactions: pulsed experiments. Physical Chemistry Chemical Physics, 2017, 19, 6274-6285.	2.8	2
29	Experimental realization of nonlinear polarization evolution mode-locking in polarization maintaining fibers., 2017,,.		0
30	Non-collinear pulse propagation and exotic phase-matching conditions. , 2017, , .		0
31	Ultrafast laser mode-locked using nonlinear polarization evolution in polarization maintaining fibers. Optics Letters, 2017, 42, 575.	3.3	84
32	Low noise, self-referenced all polarization maintaining Ytterbium fiber laser frequency comb. Optics Express, 2017, 25, 18017.	3.4	41
33	Ultrafast laser mode-locked using Nonlinear Polarization Evolution in Polarization Maintaining fibers. , 2017, , .		0
34	High-accuracy reference standards for two-photon absorption in the 680–1050 nm wavelength range. Optics Express, 2016, 24, 9053.	3.4	89
35	Spectral compression of femtosecond pulses using chirped volume Bragg gratings. Optics Letters, 2016, 41, 2394.	3.3	22
36	Simple all-PM-fiber laser system seeded by an all-normal-dispersion oscillator mode-locked with a nonlinear optical loop mirror. , $2016, \ldots$		1

#	Article	IF	Citations
37	Sub-160-fs pulses dechriped to its Fourier transform limit generated from the all-normal dispersion fiber oscillator. , 2016 , , .		1
38	Group Delay measurements of ultrabroadband pulses generated in highly nonlinear fibers. Photonics Letters of Poland, 2016, 8, 107.	0.4	2
39	Different mode-locking methods in high energy all-normal dispersion Yb femtosecond all-fiber lasers. , 2015, , .		2
40	Simple all-PM-fiber laser mode-locked with a nonlinear loop mirror. Optics Letters, 2015, 40, 3500.	3.3	109
41	Symmetry Breaking in Platinum Acetylide Chromophores Studied by Femtosecond Two-Photon Absorption Spectroscopy. Journal of Physical Chemistry A, 2014, 118, 3749-3759.	2.5	71
42	Femtosecond fiber CPA system in a single pass configuration. Photonics Letters of Poland, 2014, 6, .	0.4	0
43	Modified $\langle i \rangle$ p $\langle i \rangle$ -phenylene vinylene platinum (II) acetylides with enhanced two-photon absorption in solid host. Proceedings of SPIE, 2013, , .	0.8	1
44	Phenylene Vinylene Platinum(II) Acetylides with Prodigious Two-Photon Absorption. Journal of the American Chemical Society, 2012, 134, 19346-19349.	13.7	85
45	Primary Role of the Chromophore Bond Length Alternation in Reversible Photoconversion of Red Fluorescence Proteins. Scientific Reports, 2012, 2, 688.	3.3	30
46	The dynamics and origin of the unrelaxed fluorescence of free-base tetraphenylporphyrin. Journal of Photochemistry and Photobiology A: Chemistry, 2012, 234, 100-106.	3.9	23
47	Efficiency optimization of the square pulse pumped terawatt level optical parametric chirped pulse amplifier. , $2011, \ldots$		0
48	On the efficiency of a multiterawatt optical parametric amplifier: numerical model and optimization. Journal of the Optical Society of America B: Optical Physics, 2011, 28, 2337.	2.1	2
49	High gain broadband amplification of ultraviolet pulses using optical parametric chirped pulse amplifier. , 2010, , .		0
50	High gain broadband amplification of ultraviolet pulses in optical parametric chirped pulse amplifier. Optics Express, 2010, 18, 7911.	3.4	13
51	Simple and efficient 2-TW Optical Parametric Chirped Pulse Amplifier. , 2009, , .		0
52	Status of the Leopard Laser Project in Nevada Terawatt Facility. Journal of Fusion Energy, 2009, 28, 218-220.	1.2	3
53	Multi-terawatt chirped pulse optical parametric amplifier with a time-shear power amplification stage. Optics Express, 2009, 17, 15264.	3.4	23
54	Quantum interference between multi photon absorption pathways in organic solid. Journal of Luminescence, 2007, 127, 28-33.	3.1	1

#	Article	IF	CITATIONS
55	Strong Cooperative Enhancement of Two-Photon Absorption in Double-Strand Conjugated Porphyrin Ladder Arrays. Journal of the American Chemical Society, 2006, 128, 12432-12433.	13.7	194
56	Strong Two-Photon Absorption in New Asymmetrically Substituted Porphyrins:Â Interference between Charge-Transfer and Intermediate-Resonance Pathways. Journal of Physical Chemistry B, 2006, 110, 9802-9814.	2.6	161
57	Multipass non-collinear optical parametric amplifier for femtosecond pulses. Optics Express, 2006, 14, 779.	3.4	22
58	Acid–base properties of 3,5-dimethyl-1,7-diphenyl derivative of bis-pyrazolopyridine in non-aqueous solutions. Journal of Photochemistry and Photobiology A: Chemistry, 2006, 180, 80-87.	3.9	3
59	<title>Parametric amplification of femtosecond pulses</title> ., 2006, 6599, 84.		O
60	Near-infrared two-photon absorption in phthalocyanines: Enhancement of lowest gerade-gerade transition by symmetrical electron-accepting substitution. Journal of Chemical Physics, 2006, 124, 224701.	3.0	41
61	Quantum interference by femtosecond multi-photon absorption in conjugated dendrimers. , 2005, , .		1
62	Electronic spectroscopy and methyl internal rotation dynamics of 9,10-dimethylanthracene. Journal of Molecular Spectroscopy, 2005, 233, 15-22.	1.2	11
63	SO and S1 spectroscopy of jet cooled 9-cyano-10-methylanthracene: The methyl group as a molecular rotor. Journal of Molecular Spectroscopy, 2005, 233, 98-109.	1.2	5
64	Femtosecond transient fluorescence spectrometer based on parametric amplification. Applied Physics Letters, 2005, 86, 021909.	3.3	31
65	High-gain multipass noncollinear optical parametric chirped pulse amplifier. Applied Physics Letters, 2005, 86, 211120.	3.3	26
66	Extremely Strong Near-IR Two-Photon Absorption in Conjugated Porphyrin Dimers:Â Quantitative Description with Three-Essential-States Model. Journal of Physical Chemistry B, 2005, 109, 7223-7236.	2.6	258
67	Quantum interference in organic solid. Optics Express, 2005, 13, 6033.	3.4	8
68	Fluorescence Spectra of Phenanthridine Isolated in the Supersonic Jet Expansion - An Ab Initio Analysis. Acta Physica Polonica A, 2005, 108, 1005-1019.	0.5	0
69	Fluorescence excitation and fluorescence spectra of jet-cooled phenanthridine and 7,8-benzoquinoline. Chemical Physics Letters, 2004, 399, 239-246.	2.6	12
70	Understanding Strong Two-Photon Absorption in π-Conjugated Porphyrin Dimers via Double-Resonance Enhancement in a Three-Level Model. Journal of the American Chemical Society, 2004, 126, 15352-15353.	13.7	267
71	Fluorescence Spectra of 7,8-Benzoquinoline Isolated in the Supersonic Jet Expansion - An Ab Initio Analysis. Acta Physica Polonica A, 2004, 106, 535-545.	0.5	5
72	Molecular Dynamics and DFT Studies of Intermolecular Hydrogen Bonds between Bifunctional Heteroazaaromatic Molecules and Hydroxylic Solvents. Journal of Physical Chemistry A, 2000, 104, 9542-9555.	2.5	55

YURIY STEPANENKO

#	Article	IF	CITATIONS
73	Optical and mass selective laser spectroscopy of 9-methylanthracene and 9-cyanoanthracene and their molecular microclusters. Journal of Molecular Structure, 1999, 480-481, 595-599.	3.6	10
74	Laser studies of pyridylindoles in supersonic jets. Chemical Physics Letters, 1999, 315, 87-94.	2.6	18
75	Proton tunnelling in porphycene seeded in a supersonic jet. Chemical Physics Letters, 1998, 296, 549-556.	2.6	65