
Wickliffe Abraham

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2355683/publications.pdf Version: 2024-02-01

WICKLIEFE ARDAHAM

#	Article	IF	CITATIONS
1	Metaplasticity: the plasticity of synaptic plasticity. Trends in Neurosciences, 1996, 19, 126-130.	4.2	1,415
2	Metaplasticity: tuning synapses and networks for plasticity. Nature Reviews Neuroscience, 2008, 9, 387-387.	4.9	842
3	Roles of amyloid precursor protein and its fragments in regulating neural activity, plasticity and memory. Progress in Neurobiology, 2003, 70, 1-32.	2.8	620
4	Long-term potentiation in the hippocampus using depolarizing current pulses as the conditioning stimulus to single volley synaptic potentials. Journal of Neuroscience, 1987, 7, 774-780.	1.7	608
5	Long-Term Depression in Hippocampus. Annual Review of Neuroscience, 1996, 19, 437-462.	5.0	580
6	Metaplasticity: A new vista across the field of synaptic plasticity. Progress in Neurobiology, 1997, 52, 303-323.	2.8	340
7	Correlations between immediate early gene induction and the persistence of long-term potentiation. Neuroscience, 1993, 56, 717-727.	1.1	300
8	Induction and Experience-Dependent Consolidation of Stable Long-Term Potentiation Lasting Months in the Hippocampus. Journal of Neuroscience, 2002, 22, 9626-9634.	1.7	278
9	Memory retention – the synaptic stability versus plasticity dilemma. Trends in Neurosciences, 2005, 28, 73-78.	4.2	274
10	Effects of the NMDA antagonists CPP and MK-801 on radial arm maze performance in rats. Pharmacology Biochemistry and Behavior, 1990, 35, 785-790.	1.3	270
11	Maintenance of long-term potentiation in rat dentate gyrus requires protein synthesis but not messenger RNA synthesis immediately post-tetanization. Neuroscience, 1989, 28, 519-526.	1.1	259
12	The role of immediate early genes in the stabilization of long-term potentiation. Molecular Neurobiology, 1991, 5, 297-314.	1.9	224
13	Metabotropic Glutamate Receptors Trigger Homosynaptic Protein Synthesis to Prolong Long-Term Potentiation. Journal of Neuroscience, 2000, 20, 969-976.	1.7	206
14	How long will long-term potentiation last?. Philosophical Transactions of the Royal Society B: Biological Sciences, 2003, 358, 735-744.	1.8	203
15	Is plasticity of synapses the mechanism of long-term memory storage?. Npj Science of Learning, 2019, 4, 9.	1.5	201
16	Effects of the NMDA receptor/channel antagonists CPP and MK801 on hippocampal field potentials and long-term potentiation in anesthetized rats. Brain Research, 1988, 462, 40-46.	1.1	189
17	LTP maintenance and its protein synthesis-dependence. Neurobiology of Learning and Memory, 2008, 89, 260-268.	1.0	185
18	Asymmetric relationships between homosynaptic long-term potentiation and heterosynaptic long-term depression. Nature, 1983, 305, 717-719.	13.7	184

#	Article	IF	CITATIONS
19	Long-term potentiation and the induction of c-fos mRNA and proteins in the dentate gyrus of unanesthetized rats. Neuroscience Letters, 1989, 101, 274-280.	1.0	184
20	Priming of associative long-term depression in the dentate gyrus by Î, frequency synaptic activity. Neuron, 1992, 9, 79-84.	3.8	173
21	Bidirectional modification of CA1 synapses in the adult hippocampus in vivo. Nature, 1996, 381, 163-166.	13.7	170
22	Emerging roles of metaplasticity in behaviour and disease. Trends in Neurosciences, 2013, 36, 353-362.	4.2	164
23	Endogenous secreted amyloid precursor protein-α regulates hippocampal NMDA receptor function, long-term potentiation and spatial memory. Neurobiology of Disease, 2008, 31, 250-260.	2.1	163
24	Correlation between the induction of an immediate early gene,zif/268, and long-term potentiation in the dentate gyrus. Brain Research, 1992, 580, 147-154.	1.1	162
25	A double dissociation within the hippocampus of dopamine D1/D5 receptor and β-adrenergic receptor contributions to the persistence of long-term potentiation. Neuroscience, 1999, 92, 485-497.	1.1	159
26	Brain-derived neurotrophic factor expression after long-term potentiation. Neuroscience Letters, 1993, 160, 232-236.	1.0	158
27	Longâ€ŧerm potentiation involves enhanced synaptic excitation relative to synaptic inhibition in guineaâ€pig hippocampus Journal of Physiology, 1987, 394, 367-380.	1.3	156
28	Altered arginine metabolism in Alzheimer's disease brains. Neurobiology of Aging, 2014, 35, 1992-2003.	1.5	148
29	Heterosynaptic metaplasticity in the hippocampus in vivo: A BCM-like modifiable threshold for LTP. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 10924-10929.	3.3	145
30	Flip side of synaptic plasticity: Long-term depression mechanisms in the hippocampus. Hippocampus, 1994, 4, 127-135.	0.9	142
31	Properties and Mechanisms of LTP Maintenance. Neuroscientist, 2003, 9, 463-474.	2.6	141
32	Facilitation of long-term potentiation by prior activation of metabotropic glutamate receptors. Journal of Neurophysiology, 1996, 76, 953-962.	0.9	122
33	Priming of long-term potentiation induced by activation of metabotropic glutamate receptors coupled to phospholipase C. Hippocampus, 1998, 8, 160-170.	0.9	118
34	The involvement of L-type calcium channels in heterosynaptic long-term depression in the hippocampus. Neuroscience Letters, 1991, 130, 128-132.	1.0	115
35	Long-Lasting Increase in Cellular Excitability Associated With the Priming of LTP Induction in Rat Hippocampus. Journal of Neurophysiology, 1999, 82, 3139-3148.	0.9	113
36	Heterosynaptic changes accompany longâ€ŧerm but not shortâ€ŧerm potentiation of the perforant path in the anaesthetized rat Journal of Physiology, 1985, 363, 335-349.	1.3	108

#	Article	IF	CITATIONS
37	Environmental enrichment effects on synaptic and cellular physiology of hippocampal neurons. Neuropharmacology, 2019, 145, 3-12.	2.0	108
38	Induction and reversal of long-term potentiation by repeated high-frequency stimulation in rat hippocampal slices. , 1997, 7, 137-145.		104
39	Induction of Fos-like immunoreactivity and the maintenance of long-term potentiation in the dentate gyrus of unanesthetized rats. Molecular Brain Research, 1990, 8, 267-274.	2.5	103
40	Stress-induced metaplasticity: From synapses to behavior. Neuroscience, 2013, 250, 112-120.	1.1	100
41	Differential expression of immediate early genes after hippocampal long-term potentiation in awake rats. Molecular Brain Research, 1993, 17, 279-286.	2.5	96
42	Group I mGluRs Increase Excitability of Hippocampal CA1 Pyramidal Neurons by a PLC-Independent Mechanism. Journal of Neurophysiology, 2002, 88, 107-116.	0.9	94
43	Krox20 may play a key role in the stabilization of long-term potentiation. Molecular Brain Research, 1995, 28, 87-93.	2.5	93
44	Glucocorticoid Receptor Activation Lowers the Threshold for NMDA-Receptor-Dependent Homosynaptic Long-Term Depression in the Hippocampus Through Activation of Voltage-Dependent Calcium Channels. Journal of Neurophysiology, 1997, 78, 1-9.	0.9	93
45	Calcium/Calmodulin-Dependent Protein Kinase II Mediates Group I Metabotropic Glutamate Receptor-Dependent Protein Synthesis and Long-Term Depression in Rat Hippocampus. Journal of Neuroscience, 2011, 31, 7380-7391.	1.7	93
46	Therapeutic Potential of Secreted Amyloid Precursor Protein APPsα. Frontiers in Molecular Neuroscience, 2017, 10, 30.	1.4	91
47	NMDA-dependent heterosynaptic long-term depression in the dentate gyrus of anaesthetized rats. Synapse, 1992, 10, 1-6.	0.6	89
48	Lentiviral vectors as tools to understand central nervous system biology in mammalian model organisms. Frontiers in Molecular Neuroscience, 2015, 8, 14.	1.4	88
49	NMDA receptor regulation by amyloid-β does not account for its inhibition of LTP in rat hippocampus. Brain Research, 2003, 968, 263-272.	1.1	85
50	Immediate early gene expression associated with the persistence of heterosynaptic long-term depression in the hippocampus Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 10049-10053.	3.3	84
51	NMDA receptor-mediated metaplasticity during the induction of long-term depression by low-frequency stimulation. European Journal of Neuroscience, 2002, 15, 1819-1826.	1.2	84
52	Reinforcement determines the timing dependence of corticostriatal synaptic plasticity in vivo. Nature Communications, 2017, 8, 334.	5.8	78
53	Rapid visual stimulation induces N-methyl-D-aspartate receptor-dependent sensory long-term potentiation in the rat cortex. NeuroReport, 2006, 17, 511-515.	0.6	77
54	Boundary Learning by Optimization with Topological Constraints. , 2010, , .		77

4

#	Article	IF	CITATIONS
55	Field potential evidence for long-term potentiation of feed-forward inhibition in the rat dentate gyrus. Brain Research, 1987, 401, 87-94.	1.1	75
56	Modulation of hippocampal long-term potentiation and long-term depression by corticosteroid receptor activation. Cognitive, Affective and Behavioral Neuroscience, 1994, 22, 123-133.	1.2	75
57	Reduction of the threshold for long-term potentiation by prior theta-frequency synaptic activity. Hippocampus, 1995, 5, 52-59.	0.9	73
58	Mechanisms of heterosynaptic metaplasticity. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130148.	1.8	73
59	CNS Transduction Benefits of AAV-PHP.eB over AAV9 Are Dependent on Administration Route and Mouse Strain. Molecular Therapy - Methods and Clinical Development, 2020, 19, 447-458.	1.8	71
60	Heterosynaptic long-term depression is facilitated by blockade of inhibition in area CA1 of the hippocampus. Brain Research, 1991, 546, 336-340.	1.1	69
61	Astrocytes and synaptic plasticity in health and disease. Experimental Brain Research, 2017, 235, 1645-1655.	0.7	65
62	Long-term regulation of n-methyl-d-aspartate receptor subunits and associated synaptic proteins following hippocampal synaptic plasticity. Neuroscience, 2003, 118, 1003-1013.	1.1	61
63	Enriched environment exposure regulates excitability, synaptic transmission, and LTP in the dentate gyrus of freely moving rats. Hippocampus, 2006, 16, 149-160.	0.9	61
64	Effects of Environmental Enrichment Exposure on Synaptic Transmission and Plasticity in the Hippocampus. Current Topics in Behavioral Neurosciences, 2012, 15, 165-187.	0.8	59
65	Priming of short-term potentiation and synaptic tagging/capture mechanisms by ryanodine receptor activation in rat hippocampal CA1. Learning and Memory, 2009, 16, 178-186.	0.5	58
66	â€~Silent' priming of translation-dependent LTP by β-adrenergic receptors involves phosphorylation and recruitment of AMPA receptors. Learning and Memory, 2010, 17, 627-638.	0.5	58
67	Differences in synaptic transmission between medial and lateral components of the perforant path. Brain Research, 1984, 303, 251-260.	1.1	57
68	Differential Trafficking of AMPA and NMDA Receptors during Long-Term Potentiation in Awake Adult Animals. Journal of Neuroscience, 2007, 27, 14171-14178.	1.7	55
69	Cooperative interactions among afferents govern the induction of homosynaptic long-term depression in the hippocampus Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 11637-11641.	3.3	54
70	Immediate early gene transcription and synaptic modulation. Journal of Neuroscience Research, 1999, 58, 96-106.	1.3	54
71	Long-term potentiation expands information content of hippocampal dentate gyrus synapses. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E2410-E2418.	3.3	54
72	Biphasic changes in the levels of N-methyl-d-aspartate receptor-2 subunits correlate with the induction and persistence of long-term potentiation. Molecular Brain Research, 1998, 60, 21-27.	2.5	52

#	Article	IF	CITATIONS
73	Secreted amyloid precursor protein-α upregulates synaptic protein synthesis by a protein kinase G-dependent mechanism. Neuroscience Letters, 2009, 460, 92-96.	1.0	52
74	Temporal Profiling of Gene Networks Associated with the Late Phase of Long-Term Potentiation In Vivo. PLoS ONE, 2012, 7, e40538.	1.1	52
75	Synaptic activity-dependent modulation of mitochondrial gene expression in the rat hippocampus. Molecular Brain Research, 1998, 60, 50-56.	2.5	50
76	Enhanced hippocampal neuronal excitability and LTP persistence associated with reduced behavioral flexibility in the maternal immune activation model of schizophrenia. Hippocampus, 2013, 23, 1395-1409.	0.9	50
77	Association of aberrant neural synchrony and altered GAD67 expression following exposure to maternal immune activation, a risk factor for schizophrenia. Translational Psychiatry, 2014, 4, e418-e418.	2.4	50
78	Calcium-Dependent But Action Potential-Independent BCM-Like Metaplasticity in the Hippocampus. Journal of Neuroscience, 2012, 32, 6785-6794.	1.7	49
79	Altered Plasticity in Hippocampal CA1, But Not Dentate Gyrus, Following Long-Term Environmental Enrichment. Journal of Neurophysiology, 2010, 103, 3320-3329.	0.9	48
80	Differential effects of strain, circadian cycle, and stimulation pattern on LTP and concurrent LTD in the dentate gyrus of freely moving rats. Hippocampus, 2012, 22, 1363-1370.	0.9	48
81	Secreted amyloid precursor proteins promote proliferation and glial differentiation of adult hippocampal neural progenitor cells. Hippocampus, 2012, 22, 1517-1527.	0.9	48
82	Low-frequency stimulation does not readily cause long-term depression or depotentiation in the dentate gyrus of awake rats. Brain Research, 1996, 722, 217-221.	1.1	47
83	Priming of long-term potentiation mediated by ryanodine receptor activation in rat hippocampal slices. Neuropharmacology, 2007, 52, 118-125.	2.0	47
84	Making Synapses Strong: Metaplasticity Prolongs Associativity of Long-Term Memory by Switching Synaptic Tag Mechanisms. Cerebral Cortex, 2014, 24, 353-363.	1.6	47
85	Lentivirus-mediated expression of human secreted amyloid precursor protein-alpha prevents development of memory and plasticity deficits in a mouse model of Alzheimer's disease. Molecular Brain, 2018, 11, 7.	1.3	47
86	Dopamine D1/D5 receptor activation fails to initiate an activity-independent late-phase LTP in rat hippocampus. Brain Research, 2004, 1021, 92-100.	1.1	45
87	Dopamine D1/D5 Receptor Activation Reverses NMDA Receptor-Dependent Long-Term Depression in Rat Hippocampus. Journal of Neuroscience, 2007, 27, 2918-2926.	1.7	42
88	Neutrophil-vascular interactions drive myeloperoxidase accumulation in the brain in Alzheimer's disease. Acta Neuropathologica Communications, 2022, 10, 38.	2.4	42
89	"Heterosynaptic―LTD in the Dentate Gyrus of Anesthetized Rat Requires Homosynaptic Activity. Journal of Neurophysiology, 2007, 98, 1048-1051.	0.9	40
90	A Voltage-Based STDP Rule Combined with Fast BCM-Like Metaplasticity Accounts for LTP and Concurrent "Heterosynaptic―LTD in the Dentate Gyrus In Vivo. PLoS Computational Biology, 2015, 11, e1004588.	1.5	40

#	Article	IF	CITATIONS
91	Enriched environment exposure alters the input-output dynamics of synaptic transmission in area CA1 of freely moving rats. Neuroscience Letters, 2005, 391, 32-37.	1.0	39
92	STDP rule endowed with the BCM sliding threshold accounts for hippocampal heterosynaptic plasticity. Journal of Computational Neuroscience, 2007, 22, 129-133.	0.6	39
93	Anterior thalamic lesions reduce spine density in both hippocampal CA1 and retrosplenial cortex, but enrichment rescues CA1 spines only. Hippocampus, 2014, 24, 1232-1247.	0.9	39
94	Rapid regulation of microRNA following induction of long-term potentiation in vivo. Frontiers in Molecular Neuroscience, 2014, 7, 98.	1.4	39
95	Association of Childhood Lead Exposure With MRI Measurements of Structural Brain Integrity in Midlife. JAMA - Journal of the American Medical Association, 2020, 324, 1970.	3.8	39
96	Altered plasma arginine metabolome precedes behavioural and brain arginine metabolomic profile changes in the APPswe/PS1ΔE9 mouse model of Alzheimer's disease. Translational Psychiatry, 2018, 8, 108.	2.4	38
97	Rapidly induced gene networks following induction of longâ€ŧerm potentiation at perforant path synapses in vivo. Hippocampus, 2011, 21, 541-553.	0.9	37
98	Anterior thalamic nuclei lesions and recovery of function: Relevance to cognitive thalamus. Neuroscience and Biobehavioral Reviews, 2015, 54, 145-160.	2.9	37
99	Sequential increase in Egr-1 and AP-1 DNA binding activity in the dentate gyrus following the induction of long-term potentiation. Molecular Brain Research, 2000, 77, 258-266.	2.5	35
100	Time-dependent changes in gene expression induced by secreted amyloid precursor protein-alpha in the rat hippocampus. BMC Genomics, 2013, 14, 376.	1.2	35
101	Glutamate Receptor Trafficking and Protein Synthesis Mediate the Facilitation of LTP by Secreted Amyloid Precursor Protein-Alpha. Journal of Neuroscience, 2019, 39, 3188-3203.	1.7	35
102	Metabotropic Glutamate Receptor-Mediated Depression of the Slow Afterhyperpolarization Is Gated by Tyrosine Phosphatases in Hippocampal CA1 Pyramidal Neurons. Journal of Neurophysiology, 2004, 92, 2811-2819.	0.9	34
103	Induction and activity-dependent reversal of persistent LTP and LTD in lateral perforant path synapses in vivo. Neurobiology of Learning and Memory, 2006, 86, 82-90.	1.0	33
104	Comparison of associative and non-associative conditioning procedures in the induction of LTD in CA1 of the hippocampus. Synapse, 1993, 14, 305-313.	0.6	32
105	Evidence for common expression mechanisms underlying heterosynaptic and associative long-term depression in the dentate gyrus. Journal of Neurophysiology, 1995, 74, 1244-1247.	0.9	30
106	Physiological effects of enriched environment exposure and LTP induction in the hippocampus in vivo do not transfer faithfully to in vitro slices. Learning and Memory, 2010, 17, 480-484.	0.5	29
107	Secreted amyloid precursor protein-alpha can restore novel object location memory and hippocampal LTP in aged rats. Neurobiology of Learning and Memory, 2017, 138, 291-299.	1.0	27
108	Glutamate receptors and metaplasticity in addiction. Current Opinion in Pharmacology, 2021, 56, 39-45.	1.7	24

#	Article	IF	CITATIONS
109	Analysis of the decremental nature of LTP in the dentate gyrus. Molecular Brain Research, 1995, 30, 367-372.	2.5	23
110	Aging alters long-term potentiation–related gene networks and impairs synaptic protein synthesis in the rat hippocampus. Neurobiology of Aging, 2015, 36, 1868-1880.	1.5	22
111	Production, purification and functional validation of human secreted amyloid precursor proteins for use as neuropharmacological reagents. Journal of Neuroscience Methods, 2007, 164, 68-74.	1.3	21
112	Tumor Necrosis Factor-α-Mediated Metaplastic Inhibition of LTP Is Constitutively Engaged in an Alzheimer's Disease Model. Journal of Neuroscience, 2019, 39, 9083-9097.	1.7	21
113	An analysis of the increase in granule cell excitability accompanying habituation in the dentate gyrus of the anesthetized rat. Brain Research, 1985, 331, 303-313.	1.1	20
114	Effects of Dextromethorphan, a Nonopioid Antitussive, on Development and Expression of Amygdaloid Kindled Seizures. Epilepsia, 1990, 31, 496-502.	2.6	20
115	Sequence-independent Effects of Phosphorothioated Oligonucleotides on Synaptic Transmission and Excitability in the Hippocampus In Vivo. Neuropharmacology, 1997, 36, 345-352.	2.0	20
116	Safety and neurochemical profiles of acute and sub-chronic oral treatment with agmatine sulfate. Scientific Reports, 2019, 9, 12669.	1.6	20
117	Glutamate receptors and synaptic plasticity: The impact of Evans and Watkins. Neuropharmacology, 2022, 206, 108922.	2.0	18
118	Hippocampal synaptic transmission and LTP in vivo are intact following bilateral vestibular deafferentation in the rat. Hippocampus, 2010, 20, 461-468.	0.9	17
119	From Synaptic Metaplasticity to Behavioral Metaplasticity. Neurobiology of Learning and Memory, 2018, 154, 1-4.	1.0	17
120	MicroRNAs, miR-23a-3p and miR-151-3p, Are Regulated in Dentate Gyrus Neuropil following Induction of Long-Term Potentiation In Vivo. PLoS ONE, 2017, 12, e0170407.	1.1	16
121	Secreted Amyloid Precursor Protein-Alpha Promotes Arc Protein Synthesis in Hippocampal Neurons. Frontiers in Molecular Neuroscience, 2019, 12, 198.	1.4	16
122	Immediate early gene transcription and synaptic modulation. Journal of Neuroscience Research, 1999, 58, 96-106.	1.3	16
123	Purinergic receptor- and gap junction-mediated intercellular signalling as a mechanism of heterosynaptic metaplasticity. Neurobiology of Learning and Memory, 2013, 105, 31-39.	1.0	15
124	Priming stimulation of group II metabotropic glutamate receptors inhibits the subsequent induction of rat hippocampal long-term depression in vitro. Neuroscience Letters, 2001, 307, 13-16.	1.0	14
125	Exposure to complex environments results in more sparse representations of space in the hippocampus. Hippocampus, 2017, 27, 1178-1191.	0.9	14
126	A C-terminal peptide from secreted amyloid precursor protein-α enhances long-term potentiation in rats and a transgenic mouse model of Alzheimer's disease. Neuropharmacology, 2019, 157, 107670.	2.0	14

#	Article	IF	CITATIONS
127	Circulating Plasma microRNAs are Altered with Amyloidosis in a Mouse Model of Alzheimer's Disease. Journal of Alzheimer's Disease, 2018, 66, 835-852.	1.2	13
128	Metaplasticity: Key Element in Memory and Learning?. Physiology, 1999, 14, 85-85.	1.6	12
129	Increased expression, but not postsynaptic localisation, of ionotropic glutamate receptors during the late-phase of long-term potentiation in the dentate gyrus in vivo. Neuropharmacology, 2009, 56, 66-72.	2.0	12
130	Redistribution of Ionotropic Glutamate Receptors Detected by Laser Microdissection of the Rat Dentate Gyrus 48 h following LTP Induction In Vivo. PLoS ONE, 2014, 9, e92972.	1.1	12
131	Adult-born dentate granule cell excitability depends on the interaction of neuron age, ontogenetic age and experience. Brain Structure and Function, 2018, 223, 3213-3228.	1.2	12
132	The persistence of longâ€ŧerm potentiation in the projection from ventral hippocampus to medial prefrontal cortex in awake rats. European Journal of Neuroscience, 2016, 43, 811-822.	1.2	11
133	Contributions by metaplasticity to solving the Catastrophic Forgetting Problem. Trends in Neurosciences, 2022, 45, 656-666.	4.2	11
134	Secreted Amyloid Precursor Protein-Alpha Enhances LTP Through the Synthesis and Trafficking of Ca2+-Permeable AMPA Receptors. Frontiers in Molecular Neuroscience, 2021, 14, 660208.	1.4	10
135	Dietary zinc supplementation rescues fear-based learning and synaptic function in the Tbr1+/â^ mouse model of autism spectrum disorders. Molecular Autism, 2022, 13, 13.	2.6	9
136	Memory Maintenance. Current Directions in Psychological Science, 2006, 15, 5-8.	2.8	8
137	Altered brain arginine metabolism with age in the APPswe/PSEN1dE9 mouse model of Alzheimer's disease. Neurochemistry International, 2020, 140, 104798.	1.9	8
138	A behavioral task for investigating action discovery, selection and switching: comparison between types of reinforcer. Frontiers in Behavioral Neuroscience, 2014, 8, 398.	1.0	7
139	Environmental enrichment increases prefrontal EEG power and synchrony with the hippocampus in rats with anterior thalamus lesions. Hippocampus, 2019, 29, 128-140.	0.9	7
140	LTD: Many means to how many ends?. Hippocampus, 1996, 6, 30-34.	0.9	6
141	Stress-related phenomena. Hippocampus, 2004, 14, 675-676.	0.9	6
142	Effect of soluble amyloid precursor protein-alpha on adult hippocampal neurogenesis in a mouse model of Alzheimer's disease. Molecular Brain, 2022, 15, 5.	1.3	6
143	Partial Endothelial Nitric Oxide Synthase Deficiency Exacerbates Cognitive Deficit and Amyloid Pathology in the APPswe/PS1ΔE9 Mouse Model of Alzheimer's Disease. International Journal of Molecular Sciences, 2022, 23, 7316.	1.8	6
144	Lentivirus-Mediated Expression of Human Secreted Amyloid Precursor Protein-Alpha Promotes Long-Term Induction of Neuroprotective Genes and Pathways in a Mouse Model of Alzheimer's Disease. Journal of Alzheimer's Disease, 2021, 79, 1075-1090.	1.2	4

#	Article	IF	CITATIONS
145	Electrophysiological Investigation of Metabotropic Glutamate Receptor-Dependent Metaplasticity in the Hippocampus. Methods in Molecular Biology, 2019, 1941, 79-91.	0.4	4
146	Pathway-specific TNF-mediated metaplasticity in hippocampal area CA1. Scientific Reports, 2022, 12, 1746.	1.6	4
147	Metaplasticity. , 2009, , 819-826.		2
148	The Tripeptide RER Mimics Secreted Amyloid Precursor Protein-Alpha in Upregulating LTP. Frontiers in Cellular Neuroscience, 2019, 13, 459.	1.8	2
149	Postsynaptic cell firing triggers bidirectional metaplasticity depending on the LTP induction protocol. Journal of Neurophysiology, 2021, 125, 1624-1635.	0.9	2
150	Bilateral histone deacetylase 1 and 2 activity and enrichment at unique genes following induction of longâ€ŧerm potentiation in vivo. Hippocampus, 2021, 31, 389-407.	0.9	2
151	Keeping faith with the properties of LTP. Behavioral and Brain Sciences, 1997, 20, 614-614.	0.4	1
152	Plasma microRNA vary in association with the progression of Alzheimer's disease. Alzheimer's and Dementia, 2020, 16, e047469.	0.4	1
153	Neurophysiological and molecular approaches to understanding the mechanisms of learning and memory. Journal of the Royal Society of New Zealand, 2021, 51, 4-23.	1.0	1
154	A brief history of the Australasian Neuroscience Society. Journal of the History of the Neurosciences, 2022, 31, 395-408.	0.1	1
155	Immediate early gene transcription and synaptic modulation. , 1999, 58, 96.		1
156	Computational modeling of heterosynaptic plasticity in the hippocampus. BMC Neuroscience, 2015, 16, .	0.8	0
157	Metaplasticityâ~†. , 2017, , .		0
158	Genetic Targeting and Chemogenetic Inhibition of Newborn Neurons. Human Gene Therapy Methods, 2018, 29, 259-268.	2.1	0
159	Association of childhood lead exposure with MRI measurements of structural brain integrity in midlife. ISEE Conference Abstracts, 2021, 2021, .	0.0	0