## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2355571/publications.pdf Version: 2024-02-01



Ro Hou

| #  | Article                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Designing and Tuning the Electronic Structure of Nickel–Vanadium Layered Double Hydroxides for<br>Highly Efficient Oxygen Evolution Electrocatalysis. ACS Catalysis, 2022, 12, 3821-3831.                                     | 5.5 | 58        |
| 2  | In situ growth CNT@MOFs core—shell structures enabling high specific supercapacitances in neutral<br>aqueous electrolyte. Nano Research, 2022, 15, 6112-6120.                                                                 | 5.8 | 12        |
| 3  | Towards energy level cascaded "quantum armours―combating metal corrosion. Applied Surface<br>Science, 2022, 593, 153369.                                                                                                      | 3.1 | 1         |
| 4  | Silver thiocyanate treatment-induced enhancement of photoluminescence efficiency of CsPbBr3 perovskite quantum dots. Journal of the Korean Physical Society, 2022, 81, 150-157.                                               | 0.3 | 1         |
| 5  | Grapheneâ€integrated <scp> CuCo <sub>2</sub> S <sub>4</sub> </scp> microspheres as a sustainable<br>anode material for highâ€performance Liâ€ion batteries. International Journal of Energy Research, 2021,<br>45, 1613-1626. | 2.2 | 17        |
| 6  | Room Temperature Wafer-Scale Synthesis of Highly Transparent, Conductive CuS Nanosheet Films via a<br>Simple Sulfur Adsorption-Corrosion Method. ACS Applied Materials & Interfaces, 2021, 13,<br>4244-4252.                  | 4.0 | 19        |
| 7  | A Ni or Co single atom anchored conjugated microporous polymer for high-performance photocatalytic hydrogen evolution. Journal of Materials Chemistry A, 2021, 9, 19894-19900.                                                | 5.2 | 34        |
| 8  | Colloidal quantum dots and metal halide perovskite hybridization for solar cell stability and performance enhancement. Journal of Materials Chemistry A, 2021, 9, 15522-15541.                                                | 5.2 | 8         |
| 9  | Full-spectrum thermal analysis in twisted bilayer graphene. Physical Chemistry Chemical Physics, 2021, 23, 19166-19172.                                                                                                       | 1.3 | 5         |
| 10 | Indoor photovoltaics, <i>The Next Big Trend</i> in solutionâ€processed solar cells. InformaÄnÃ-<br>Materi¡ly, 2021, 3, 445-459.                                                                                               | 8.5 | 75        |
| 11 | Thermodynamically and Physically Stable Dendrite-Free Li Interface with Layered Boron Nitride<br>Separators. ACS Sustainable Chemistry and Engineering, 2021, 9, 4185-4193.                                                   | 3.2 | 7         |
| 12 | Synthetic Mechanism Studies of Iron Selenides: An Emerging Class of Materials for Electrocatalysis.<br>Catalysts, 2021, 11, 681.                                                                                              | 1.6 | 5         |
| 13 | Balanced Charge Carrier Transport Mediated by Quantum Dot Film Post-organization for<br>Light-Emitting Diode Applications. ACS Applied Materials & Interfaces, 2021, 13, 26170-26179.                                         | 4.0 | 8         |
| 14 | High-Throughput Computations of Cross-Plane Thermal Conductivity in Multilayer Stanene.<br>International Journal of Heat and Mass Transfer, 2021, 171, 121073.                                                                | 2.5 | 10        |
| 15 | Enhanced Direct White Light Emission Efficiency in Quantum Dot Lightâ€Emitting Diodes via Embedded<br>Ferroelectric Islands Structure. Advanced Functional Materials, 2021, 31, 2104239.                                      | 7.8 | 18        |
| 16 | The Effect of Cs/FA Ratio on the Longâ€Term Stability of Mixed Cation Perovskite Solar Cells. Solar Rrl, 2021, 5, 2100660.                                                                                                    | 3.1 | 10        |
| 17 | Molecular Dynamics and Machine Learning in Catalysts. Catalysts, 2021, 11, 1129.                                                                                                                                              | 1.6 | 15        |
| 18 | Efficient photocathodic protection enabled by a multi-dimensional quaternary hybrid superstructure.<br>Chemical Engineering Journal, 2021, 421, 127858.                                                                       | 6.6 | 18        |

| #  | Article                                                                                                                                                                                                                                                                                    | IF    | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------|
| 19 | Secondary particle size determining sedimentation and adsorption kinetics of titanate-based materials for ammonia nitrogen and methylene blue removal. Journal of Molecular Liquids, 2021, 343, 117026.                                                                                    | 2.3   | 11        |
| 20 | Colour-encoded electroluminescent white light-emitting diodes enabled using perovskite–Cu–In–S<br>quantum composites. Journal of Materials Chemistry C, 2021, 9, 7027-7034.                                                                                                                | 2.7   | 13        |
| 21 | Ferroelectric Field Effect Induced Charge Carrier Transport Modulation at Quantum Dot Solar Cell<br>Heterojunction Interface. ACS Applied Energy Materials, 2021, 4, 12056-12062.                                                                                                          | 2.5   | 7         |
| 22 | Interface-Engineered Paclitaxel-Based Hollow Mesoporous Organosilica Nanoplatforms for<br>Photothermal-Enhanced Chemotherapy of Tumor. Molecular Pharmaceutics, 2021, 18, 4531-4542.                                                                                                       | 2.3   | 2         |
| 23 | Experimental and Theoretical Insights into the Borohydride-Based Reduction-Induced Metal<br>Interdiffusion in Fe-Oxide@NiCo <sub>2</sub> O <sub>4</sub> for Enhanced Oxygen Evolution. ACS<br>Applied Materials & Interfaces, 2021, 13, 53725-53735.                                       | 4.0   | 32        |
| 24 | Optimal Rule-of-Thumb Design of Nickel–Vanadium Oxides as an Electrochromic Electrode with<br>Ultrahigh Capacity and Ultrafast Color Tunability. ACS Applied Materials & Interfaces, 2021, 13,<br>57403-57410.                                                                             | 4.0   | 16        |
| 25 | Self-Catalytic Growth of Elementary Semiconductor Nanowires with Controlled Morphology and Crystallographic Orientation. Nano Letters, 2021, 21, 9909-9915.                                                                                                                                | 4.5   | 2         |
| 26 | The Effect of Cs/FA Ratio on the Longâ€Term Stability of Mixed Cation Perovskite Solar Cells. Solar Rrl, 2021, 5, .                                                                                                                                                                        | 3.1   | 0         |
| 27 | Machine learning and artificial neural network accelerated computational discoveries in materials science. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2020, 10, e1450.                                                                                              | 6.2   | 58        |
| 28 | Hybrid Passivation for Foldable Indium Gallium Zinc Oxide Thinâ€Film Transistors Mediated by<br>Lowâ€Temperature and Lowâ€Damage Paryleneâ€C/Atomic Layer Depositionâ€AlO <sub><i>x</i></sub> Coating<br>Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 1900832. | . 0.8 | 8         |
| 29 | Copper–Indium Binary Catalyst on a Gas Diffusion Electrode for High-Performance CO <sub>2</sub><br>Electrochemical Reduction with Record CO Production Efficiency. ACS Applied Materials &<br>Interfaces, 2020, 12, 601-608.                                                               | 4.0   | 57        |
| 30 | A Robust Nonprecious CuFe Composite as a Highly Efficient Bifunctional Catalyst for Overall<br>Electrochemical Water Splitting. Small, 2020, 16, e1905884.                                                                                                                                 | 5.2   | 63        |
| 31 | 2D Metal Zn Nanostructure Electrodes for Highâ€Performance Zn Ion Supercapacitors. Advanced<br>Energy Materials, 2020, 10, 1902981.                                                                                                                                                        | 10.2  | 158       |
| 32 | Multiphoton Absorption Stimulated Metal Chalcogenide Quantum Dot Solar Cells under Ambient and<br>Concentrated Irradiance. Advanced Functional Materials, 2020, 30, 2004563.                                                                                                               | 7.8   | 40        |
| 33 | Lattice marginal reconstruction-enabled high ambient-tolerance perovskite quantum dot phototransistors. Journal of Materials Chemistry C, 2020, 8, 16001-16009.                                                                                                                            | 2.7   | 6         |
| 34 | Indoor application of emerging photovoltaics—progress, challenges and perspectives. Journal of Materials Chemistry A, 2020, 8, 21503-21525.                                                                                                                                                | 5.2   | 64        |
| 35 | Quantum Dots Microstructural Metrology: From Timeâ€Resolved Spectroscopy to Spatially Resolved Electron Microscopy. Particle and Particle Systems Characterization, 2020, 37, 2000192.                                                                                                     | 1.2   | 5         |
| 36 | Nanofilament array embedded tungsten oxide for highly efficient electrochromic supercapacitor electrodes. Journal of Materials Chemistry A, 2020, 8, 13459-13469.                                                                                                                          | 5.2   | 53        |

| #  | Article                                                                                                                                                                                   | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Colloidal quantum dot hybrids: an emerging class of materials for ambient lighting. Journal of<br>Materials Chemistry C, 2020, 8, 10676-10695.                                            | 2.7 | 46        |
| 38 | Rational-Designed Hybrid Aerogels for Ultra-Flyweight Electrochemical Energy Storage. Journal of<br>Physical Chemistry C, 2020, 124, 15688-15697.                                         | 1.5 | 13        |
| 39 | Asymmetric Carbon Nanohorn Enabled Soft Capacitors with High Power Density and Ultra‣ow Cutoff<br>Frequency. Advanced Materials Technologies, 2020, 5, 2000372.                           | 3.0 | 5         |
| 40 | Waterproof Flexible InP@ZnSeS Quantum Dot Lightâ€Emitting Diode. Advanced Optical Materials, 2020,<br>8, 1901362.                                                                         | 3.6 | 23        |
| 41 | Plasmonic Effects of Dual-Metal Nanoparticle Layers for High-Performance Quantum Dot Solar Cells.<br>Plasmonics, 2020, 15, 1007-1013.                                                     | 1.8 | 12        |
| 42 | Nano-to-Microporous Networks via Inkjet Printing of ZnO Nanoparticles/Graphene Hybrid for<br>Ultraviolet Photodetectors. ACS Applied Nano Materials, 2020, 3, 4454-4464.                  | 2.4 | 19        |
| 43 | Growth of quantum dot coated core-shell anisotropic nanowires for improved thermal and electronic transport. Applied Physics Letters, 2019, 114, 243104.                                  | 1.5 | 6         |
| 44 | Colloidal Quantum Dots: The Artificial Building Blocks for Newâ€Generation Photoâ€Electronics and Photochemistry. Israel Journal of Chemistry, 2019, 59, 637-638.                         | 1.0 | 10        |
| 45 | Molecular interaction balanced one- and two-dimensional hybrid nanoarchitectures for high-performance supercapacitors. Physical Chemistry Chemical Physics, 2019, 21, 22283-22292.        | 1.3 | 12        |
| 46 | Direct Epitaxial Synthesis of Selective Two-Dimensional Lateral Heterostructures. ACS Nano, 2019, 13, 13047-13055.                                                                        | 7.3 | 52        |
| 47 | Morphology Engineering of Selfâ€Assembled Nanostructured CuCo <sub>2</sub> O <sub>4</sub> Anodes<br>for Lithiumâ€lon Batteries. Energy Technology, 2019, 7, 1900295.                      | 1.8 | 22        |
| 48 | Quantum Dots for Hybrid Energy Harvesting: From Integration to Piezoâ€Phototronics. Israel Journal of<br>Chemistry, 2019, 59, 747-761.                                                    | 1.0 | 3         |
| 49 | Chemically encoded self-organized quantum chain supracrystals with exceptional charge and ion transport properties. Nano Energy, 2019, 62, 764-771.                                       | 8.2 | 20        |
| 50 | Quantum Dots Based Photocatalytic Hydrogen Evolution. Israel Journal of Chemistry, 2019, 59, 762-773.                                                                                     | 1.0 | 27        |
| 51 | Accelerated discoveries of mechanical properties of graphene using machine learning and high-throughput computation. Carbon, 2019, 148, 115-123.                                          | 5.4 | 68        |
| 52 | Modeling Electrical Percolation to optimize the Electromechanical Properties of CNT/Polymer<br>Composites in Highly Stretchable Fiber Strain Sensors. Scientific Reports, 2019, 9, 20376. | 1.6 | 18        |
| 53 | Nanoporous CuCo2O4 nanosheets as a highly efficient bifunctional electrode for supercapacitors and water oxidation catalysis. Applied Surface Science, 2019, 470, 360-367.                | 3.1 | 104       |
| 54 | Facile electrodeposition of high-density CuCo2O4 nanosheets as a high-performance Li-ion battery anode material. Journal of Industrial and Engineering Chemistry, 2019, 69, 13-17.        | 2.9 | 27        |

| #  | Article                                                                                                                                                                                                                                 | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Optimizing nanosheet nickel cobalt oxide as an anode material for bifunctional electrochemical energy storage and oxygen electrocatalysis. Electrochimica Acta, 2018, 274, 279-287.                                                     | 2.6  | 24        |
| 56 | Balancing Charge Carrier Transport in a Quantum Dot P–N Junction toward Hysteresis-Free<br>High-Performance Solar Cells. ACS Energy Letters, 2018, 3, 1036-1043.                                                                        | 8.8  | 37        |
| 57 | Flexible Solar Cells: Charge Transport Modulation of a Flexible Quantum Dot Solar Cell Using a<br>Piezoelectric Effect (Adv. Energy Mater. 3/2018). Advanced Energy Materials, 2018, 8, 1870012.                                        | 10.2 | 6         |
| 58 | Field effect transistors and phototransistors based upon p-type solution-processed PbS nanowires.<br>Nanotechnology, 2018, 29, 075202.                                                                                                  | 1.3  | 11        |
| 59 | Direct growth of 2D nickel hydroxide nanosheets intercalated with polyoxovanadate anions as a binder-free supercapacitor electrode. Nanoscale, 2018, 10, 8953-8961.                                                                     | 2.8  | 76        |
| 60 | Charge Transport Modulation of a Flexible Quantum Dot Solar Cell Using a Piezoelectric Effect.<br>Advanced Energy Materials, 2018, 8, 1700809.                                                                                          | 10.2 | 30        |
| 61 | Nanocluster Intercalation: Two-Dimensional Layered Hydroxide Nanoporous Nanohybrids Pillared<br>with Zero-Dimensional Polyoxovanadate Nanoclusters for Enhanced Water Oxidation Catalysis<br>(Small 49/2018). Small, 2018, 14, 1870235. | 5.2  | 0         |
| 62 | Water Splitting: Cobalt Nanocrystals Encapsulated in Heteroatom-Rich Porous Carbons Derived from<br>Conjugated Microporous Polymers for Efficient Electrocatalytic Hydrogen Evolution (Small 42/2018).<br>Small, 2018, 14, 1870193.     | 5.2  | 4         |
| 63 | Twoâ€Đimensional Layered Hydroxide Nanoporous Nanohybrids Pillared with Zeroâ€Đimensional<br>Polyoxovanadate Nanoclusters for Enhanced Water Oxidation Catalysis. Small, 2018, 14, e1703481.                                            | 5.2  | 33        |
| 64 | Consecutive Junction-Induced Efficient Charge Separation Mechanisms for High-Performance<br>MoS <sub>2</sub> /Quantum Dot Phototransistors. ACS Applied Materials & Interfaces, 2018, 10,<br>38264-38271.                               | 4.0  | 58        |
| 65 | Cobalt Nanocrystals Encapsulated in Heteroatomâ€Rich Porous Carbons Derived from Conjugated<br>Microporous Polymers for Efficient Electrocatalytic Hydrogen Evolution. Small, 2018, 14, e1803232.                                       | 5.2  | 27        |
| 66 | Sustainable hybrid energy harvester based on air stable quantum dot solar cells and triboelectric nanogenerator. Journal of Materials Chemistry A, 2018, 6, 12440-12446.                                                                | 5.2  | 33        |
| 67 | Nanoflake NiMoO4 based smart supercapacitor for intelligent power balance monitoring. Solar<br>Energy Materials and Solar Cells, 2018, 185, 166-173.                                                                                    | 3.0  | 144       |
| 68 | Influence of operating temperature on Li2ZnTi3O8 anode performance and high-rate charging activity of Li-ion battery. Ceramics International, 2018, 44, 18625-18632.                                                                    | 2.3  | 23        |
| 69 | Oxygen Evolution Reaction: Self-Assembled Nanostructured CuCo2 O4 for Electrochemical Energy<br>Storage and the Oxygen Evolution Reaction via Morphology Engineering (Small 28/2018). Small, 2018,<br>14, 1870132.                      | 5.2  | 6         |
| 70 | Ultrathin Ni-Mo oxide nanoflakes for high-performance supercapacitor electrodes. Journal of Alloys and Compounds, 2018, 767, 782-788.                                                                                                   | 2.8  | 23        |
| 71 | Selfâ€Assembled Nanostructured CuCo <sub>2</sub> O <sub>4</sub> for Electrochemical Energy<br>Storage and the Oxygen Evolution Reaction via Morphology Engineering. Small, 2018, 14, e1800742.                                          | 5.2  | 100       |
| 72 | Solvothermal synthesis of high-performance Ni-Co layered double hydroxide nanofoam electrode for electrochemical energy storage. Current Applied Physics, 2017, 17, 501-506.                                                            | 1.1  | 23        |

| #  | Article                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Hierarchically assembled tubular shell-core-shell heterostructure of hybrid transition metal<br>chalcogenides for high-performance supercapacitors with ultrahigh cyclability. Nano Energy, 2017, 37,<br>15-23.         | 8.2 | 72        |
| 74 | Self-assembled two-dimensional copper oxide nanosheet bundles as an efficient oxygen evolution reaction (OER) electrocatalyst for water splitting applications. Journal of Materials Chemistry A, 2017, 5, 12747-12751. | 5.2 | 170       |
| 75 | Red green blue emissive lead sulfide quantum dots: heterogeneous synthesis and applications. Journal of Materials Chemistry C, 2017, 5, 3692-3698.                                                                      | 2.7 | 23        |
| 76 | Highly efficient electro-optically tunable smart-supercapacitors using an oxygen-excess nanograin tungsten oxide thin film. Solar Energy Materials and Solar Cells, 2017, 166, 78-85.                                   | 3.0 | 106       |
| 77 | Dataset on electro-optically tunable smart-supercapacitors based on oxygen-excess nanograin tungsten oxide thin film. Data in Brief, 2017, 14, 453-457.                                                                 | 0.5 | 3         |
| 78 | Highly stable 3D porous heterostructures with hierarchically-coordinated octahedral transition metals for enhanced performance supercapacitors. Nano Energy, 2017, 39, 337-345.                                         | 8.2 | 72        |
| 79 | Solubility-Dependent NiMoO <sub>4</sub> Nanoarchitectures: Direct Correlation between Rationally<br>Designed Structure and Electrochemical Pseudokinetics. ACS Applied Materials & Interfaces, 2016,<br>8, 35227-35234. | 4.0 | 37        |
| 80 | Inorganic-ligand exchanging time effect in PbS quantum dot solar cell. Applied Physics Letters, 2016, 109, .                                                                                                            | 1.5 | 33        |
| 81 | High Performance PbS Quantum Dot/Graphene Hybrid Solar Cell with Efficient Charge Extraction. ACS<br>Applied Materials & Interfaces, 2016, 8, 13902-13908.                                                              | 4.0 | 72        |
| 82 | Highly Monodispersed PbS Quantum Dots for Outstanding Cascaded-Junction Solar Cells. ACS Energy Letters, 2016, 1, 834-839.                                                                                              | 8.8 | 90        |
| 83 | Enhanced charge carrier transport properties in colloidal quantum dot solar cells via organic and inorganic hybrid surface passivation. Journal of Materials Chemistry A, 2016, 4, 18769-18775.                         | 5.2 | 29        |
| 84 | Electronic and optical properties of single crystal SnS <sub>2</sub> : an earth-abundant disulfide photocatalyst. Journal of Materials Chemistry A, 2016, 4, 1312-1318.                                                 | 5.2 | 246       |
| 85 | Crystal structure and defects visualization of Cu2ZnSnS4 nanoparticles employing transmission electron microscopy and electron diffraction. Applied Materials Today, 2015, 1, 52-59.                                    | 2.3 | 75        |
| 86 | Rapid phosphine-free synthesis of CdSe quantum dots: promoting the generation of Se precursors using a radical initiator. Journal of Materials Chemistry A, 2014, 2, 6879-6886.                                         | 5.2 | 31        |
| 87 | Lactose as a "Trojan Horse―for Quantum Dot Cell Transport. Angewandte Chemie - International<br>Edition, 2014, 53, 810-814.                                                                                             | 7.2 | 67        |
| 88 | Initial Stages in the Formation of Cu <sub>2</sub> ZnSn(S,Se) <sub>4</sub> Nanoparticles. Chemistry - A<br>European Journal, 2013, 19, 15847-15851.                                                                     | 1.7 | 30        |
| 89 | Structure and Band Edge Energy of Highly Luminescent<br>CdSe <sub>1–<i>x</i></sub> Te <sub><i>x</i></sub> Alloyed Quantum Dots. Journal of Physical<br>Chemistry C, 2013, 117, 6814-6820.                               | 1.5 | 60        |
| 90 | Evolvement of soft templates in surfactant/cosurfactant system for shape control of ZnSe<br>nanocrystals. Materials Science and Engineering B: Solid-State Materials for Advanced Technology,<br>2012, 177, 411-415.    | 1.7 | 4         |

| #  | Article                                                                                                                                   | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91 | Application of ultrasonics to enhance the efficiency of cleaning Thelephora ganbajun. Ultrasonics<br>Sonochemistry, 2009, 16, 209-211.    | 3.8 | 7         |
| 92 | A simple way of shape-controlled synthesis of ZnSe nanocrystals :  nanodots, nanoflowers, and<br>nanotubes. CrystEngComm, 2009, 11, 1789. | 1.3 | 15        |
| 93 | Lead Leaching of Perovskite Solar Cells in Aqueous Environments: A Quantitative Investigation. Solar<br>Rrl, 0, , .                       | 3.1 | 5         |