Menad Nait Amar

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/2355529/menad-nait-amar-publications-by-year.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

63 722 17 23 g-index

69 1,119 4.7 5.65 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
63	Robust machine learning models of carbon dioxide trapping indexes at geological storage sites. <i>Fuel</i> , 2022 , 316, 123391	7.1	3
62	On the evaluation of permeability of heterogeneous carbonate reservoirs using rigorous data-driven techniques. <i>Journal of Petroleum Science and Engineering</i> , 2022 , 208, 109685	4.4	1
61	Well production forecast in Volve field: Application of rigorous machine learning techniques and metaheuristic algorithm. <i>Journal of Petroleum Science and Engineering</i> , 2022 , 208, 109468	4.4	3
60	Predicting viscosity of CO2N2 gaseous mixtures using advanced intelligent schemes. <i>Journal of Petroleum Science and Engineering</i> , 2022 , 208, 109359	4.4	2
59	On the evaluation of the interfacial tension of immiscible binary systems of methane, carbon dioxide, and nitrogen-alkanes using robust data-driven approaches. <i>AEJ - Alexandria Engineering Journal</i> , 2022 , 61, 11601-11614	6.1	
58	Application of machine learning methods for estimating and comparing the sulfur dioxide absorption capacity of a variety of deep eutectic solvents. <i>Journal of Cleaner Production</i> , 2022 , 132465	10.3	1
57	Robust smart schemes for modeling carbon dioxide uptake in metal 🗈 Ibrganic frameworks. <i>Fuel</i> , 2021 , 311, 122545	7.1	0
56	Modelling density of pure and binary mixtures of normal alkanes: Comparison of hybrid soft computing techniques, gene expression programming, and equations of state. <i>Journal of Petroleum Science and Engineering</i> , 2021 , 208, 109737	4.4	1
55	Smart Proxy Modeling of a Fractured Reservoir Model for Production Optimization: Implementation of Metaheuristic Algorithm and Probabilistic Application. <i>Natural Resources Research</i> , 2021 , 30, 2431-2462	4.9	10
54	Prediction of hydrate formation temperature using gene expression programming. <i>Journal of Natural Gas Science and Engineering</i> , 2021 , 89, 103879	4.6	11
53	Application of nature-inspired algorithms and artificial neural network in waterflooding well control optimization. <i>Journal of Petroleum Exploration and Production</i> , 2021 , 11, 3103-3127	2.2	5
52	Modeling of methane adsorption capacity in shale gas formations using white-box supervised machine learning techniques. <i>Journal of Petroleum Science and Engineering</i> , 2021 , 208, 109226	4.4	5
51	Predicting wax deposition using robust machine learning techniques. Petroleum, 2021,	4.1	1
50	Application of Low-Salinity Waterflooding in Carbonate Cores: A Geochemical Modeling Study. <i>Natural Resources Research</i> , 2021 , 30, 519-542	4.9	10
49	Toward smart schemes for modeling CO2 solubility in crude oil: Application to carbon dioxide enhanced oil recovery. <i>Fuel</i> , 2021 , 285, 119147	7.1	20
48	Hybrid soft computational approaches for modeling the maximum ultimate bond strength between the corroded steel reinforcement and surrounding concrete. <i>Neural Computing and Applications</i> , 2021 , 33, 6905-6920	4.8	10
47	On the evaluation of solubility of hydrogen sulfide in ionic liquids using advanced committee machine intelligent systems. <i>Journal of the Taiwan Institute of Chemical Engineers</i> , 2021 , 118, 159-168	5.3	19

(2020-2021)

46	Modeling surface tension of ionic liquids by chemical structure-intelligence based models. <i>Journal of Molecular Liquids</i> , 2021 , 342, 116961	6	7	
45	Predicting solubility of nitrous oxide in ionic liquids using machine learning techniques and gene expression programming. <i>Journal of the Taiwan Institute of Chemical Engineers</i> , 2021 , 128, 156-156	5.3	1	
44	Simulation of the ultimate conditions of fibre-reinforced polymer confined concrete using hybrid intelligence models. <i>Engineering Failure Analysis</i> , 2021 , 128, 105605	3.2	1	
43	Towards improved genetic programming based-correlations for predicting the interfacial tension of the systems pure/impure CO2-brine. <i>Journal of the Taiwan Institute of Chemical Engineers</i> , 2021 , 127, 186-196	5.3	2	
42	Optimization of WAG in real geological field using rigorous soft computing techniques and nature-inspired algorithms. <i>Journal of Petroleum Science and Engineering</i> , 2021 , 206, 109038	4.4	12	
41	Modeling the density of acid gases at extensive ranges of pressure and temperature conditions. Journal of Petroleum Science and Engineering, 2021, 207, 109063	4.4		
40	Application of intelligent models in reservoir and production engineering 2020, 79-227			
39	Modeling viscosity of CO2 at high temperature and pressure conditions. <i>Journal of Natural Gas Science and Engineering</i> , 2020 , 77, 103271	4.6	13	
38	Rigorous Connectionist Models to Predict Carbon Dioxide Solubility in Various Ionic Liquids. <i>Applied Sciences (Switzerland)</i> , 2020 , 10, 304	2.6	15	
37	Prediction of Lattice Constant of AXY Cubic Crystals Using Gene Expression Programming. <i>Journal of Physical Chemistry B</i> , 2020 , 124, 6037-6045	3.4	24	
36	Prediction of CO2 diffusivity in brine using white-box machine learning. <i>Journal of Petroleum Science and Engineering</i> , 2020 , 190, 107037	4.4	13	
35	Modeling CO2 Solubility in Water at High Pressure and Temperature Conditions. <i>Energy & Energy & Energ</i>	4.1	31	
34	Applying hybrid support vector regression and genetic algorithm to water alternating CO2 gas EOR 2020 , 10, 613-630		22	
33	Integrating new emerging technologies for enhanced oil recovery: Ultrasonic, microorganism, and emulsion. <i>Journal of Petroleum Science and Engineering</i> , 2020 , 192, 107229	4.4	8	
32	Viscosity of Ionic Liquids: Application of the Eyring % Theory and a Committee Machine Intelligent System. <i>Molecules</i> , 2020 , 26,	4.8	7	
31	Applications of Artificial Intelligence Techniques in the Petroleum Industry 2020,		2	
30	Application of gene expression programming for predicting density of binary and ternary mixtures of ionic liquids and molecular solvents. <i>Journal of the Taiwan Institute of Chemical Engineers</i> , 2020 , 117, 63-74	5.3	6	
29	Modeling relative permeability of gas condensate reservoirs: Advanced computational frameworks. Journal of Petroleum Science and Engineering, 2020, 189, 106929	4.4	14	

28	Prediction of Wax Appearance Temperature Using Artificial Intelligent Techniques. <i>Arabian Journal for Science and Engineering</i> , 2020 , 45, 1319-1330	2.5	16
27	A combined support vector regression with firefly algorithm for prediction of bottom hole pressure. <i>SN Applied Sciences</i> , 2020 , 2, 1	1.8	8
26	On the evaluation of thermal conductivity of nanofluids using advanced intelligent models. <i>International Communications in Heat and Mass Transfer</i> , 2020 , 118, 104825	5.8	14
25	Predicting thermal conductivity of carbon dioxide using group of data-driven models. <i>Journal of the Taiwan Institute of Chemical Engineers</i> , 2020 , 113, 165-177	5.3	20
24	Weaknesses and strengths of intelligent models in petroleum industry 2020 , 295-301		
23	Evolving support vector regression using Grey Wolf optimization; forecasting the geomechanical properties of rock. <i>Engineering With Computers</i> , 2020 , 1	4.5	18
22	Modeling solubility of sulfur in pure hydrogen sulfide and sour gas mixtures using rigorous machine learning methods. <i>International Journal of Hydrogen Energy</i> , 2020 , 45, 33274-33287	6.7	28
21	Automated design of a new integrated intelligent computing paradigm for constructing a constitutive model applicable to predicting rock fractures. <i>Engineering With Computers</i> , 2020 , 1	4.5	4
20	Modeling interfacial tension of methane-brine systems at high pressure and high salinity conditions. <i>Journal of the Taiwan Institute of Chemical Engineers</i> , 2020 , 114, 125-141	5.3	9
19	Application of hybrid support vector regression artificial bee colony for prediction of MMP in CO2-EOR process. <i>Petroleum</i> , 2020 , 6, 415-422	4.1	25
18	Modeling minimum miscibility pressure of pure/impure CO2-crude oil systems using adaptive boosting support vector regression: Application to gas injection processes. <i>Journal of Petroleum Science and Engineering</i> , 2020 , 184, 106499	4.4	15
17	Modeling dew point pressure of gas condensate reservoirs: Comparison of hybrid soft computing approaches, correlations, and thermodynamic models. <i>Journal of Petroleum Science and Engineering</i> , 2020 , 184, 106558	4.4	17
16	Experimental measurement and compositional modeling of crude oil viscosity at reservoir conditions. <i>Journal of the Taiwan Institute of Chemical Engineers</i> , 2020 , 109, 35-50	5.3	8
15	Modeling oil-brine interfacial tension at high pressure and high salinity conditions. <i>Journal of Petroleum Science and Engineering</i> , 2019 , 183, 106413	4.4	13
14	Modeling temperature dependency of oil - water relative permeability in thermal enhanced oil recovery processes using group method of data handling and gene expression programming. <i>Engineering Applications of Computational Fluid Mechanics</i> , 2019 , 13, 724-743	4.5	21
13	Modeling temperature-based oil-water relative permeability by integrating advanced intelligent models with grey wolf optimization: Application to thermal enhanced oil recovery processes. <i>Fuel</i> , 2019 , 242, 649-663	7.1	39
12	Predicting solubility of CO2 in brine by advanced machine learning systems: Application to carbon capture and sequestration. <i>Journal of CO2 Utilization</i> , 2019 , 33, 83-95	7.6	34
11	Adaptive surrogate modeling with evolutionary algorithm for well placement optimization in fractured reservoirs. <i>Applied Soft Computing Journal</i> , 2019 , 80, 177-191	7.5	12

LIST OF PUBLICATIONS

10	An efficient methodology for multi-objective optimization of water alternating CO2 EOR process. Journal of the Taiwan Institute of Chemical Engineers, 2019 , 99, 154-165	5.3	32	
9	Modeling Wax Disappearance Temperature Using Advanced Intelligent Frameworks. <i>Energy & Energy & Energ</i>	4.1	19	
8	Optimization of WAG Process Using Dynamic Proxy, Genetic Algorithm and Ant Colony Optimization. <i>Arabian Journal for Science and Engineering</i> , 2018 , 43, 6399-6412	2.5	30	
7	Bottom hole pressure estimation using hybridization neural networks and grey wolves optimization. <i>Petroleum</i> , 2018 , 4, 419-429	4.1	30	
6	Automated Optimization of Well Placement via Adaptive Space-Filling Surrogate Modelling and Evolutionary Algorithm 2018 ,		5	
5	Two novel combined systems for predicting the peak shear strength using RBFNN and meta-heuristic computing paradigms. <i>Engineering With Computers</i> ,1	4.5	8	
4	A novel solution for simulating air overpressure resulting from blasting using an efficient cascaded forward neural network. <i>Engineering With Computers</i> ,1	4.5	4	
3	Integrating the LSSVM and RBFNN models with three optimization algorithms to predict the soil liquefaction potential. <i>Engineering With Computers</i> ,1	4.5	5	
2	Improving the performance of LSSVM model in predicting the safety factor for circular failure slope through optimization algorithms. <i>Engineering With Computers</i> ,1	4.5	3	
1	Modeling Solubility of Anhydrite and Gypsum in Aqueous Solutions: Implications for Swelling of Clay-Sulfate Rocks. <i>Rock Mechanics and Rock Engineering</i> ,1	5.7	Ο	