Paras Kumar Mishra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2355361/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Metabolites and Genes behind Cardiac Metabolic Remodeling in Mice with Type 1 Diabetes Mellitus. International Journal of Molecular Sciences, 2022, 23, 1392.	4.1	0
2	Impaired microcirculatory function, mitochondrial respiration, and oxygen utilization in skeletal muscle of claudicating patients with peripheral artery disease. American Journal of Physiology - Heart and Circulatory Physiology, 2022, 322, H867-H879.	3.2	18
3	miRâ€133a Mitigates Ferroptosis by Attenuating Fatty Acid Metabolism in the Diabetic Heart. FASEB Journal, 2022, 36, .	0.5	0
4	Guidelines on models of diabetic heart disease. American Journal of Physiology - Heart and Circulatory Physiology, 2022, 323, H176-H200.	3.2	20
5	Generating Ins2+/â^'/miR-133aTg Mice to Model miRNA-Driven Cardioprotection of Human Diabetic Heart. Methods in Molecular Biology, 2021, 2224, 113-121.	0.9	3
6	Intracellular matrix metalloproteinase-9 mediates epigenetic modifications and autophagy to regulate differentiation in human cardiac stem cells. Stem Cells, 2021, 39, 497-506.	3.2	9
7	Infarct in the Heart: What's MMP-9 Got to Do with It?. Biomolecules, 2021, 11, 491.	4.0	37
8	Why the diabetic heart is energy inefficient: a ketogenesis and ketolysis perspective. American Journal of Physiology - Heart and Circulatory Physiology, 2021, 321, H751-H755.	3.2	11
9	Regulating Polyamine Metabolism by miRNAs in Diabetic Cardiomyopathy. Current Diabetes Reports, 2021, 21, 52.	4.2	3
10	Diabetes and COVID-19 risk: an miRNA perspective. American Journal of Physiology - Heart and Circulatory Physiology, 2020, 319, H604-H609.	3.2	19
11	Acute mitochondrial antioxidant intake improves endothelial function, antioxidant enzyme activity, and exercise tolerance in patients with peripheral artery disease. American Journal of Physiology - Heart and Circulatory Physiology, 2020, 319, H456-H467.	3.2	57
12	MMP9 mediates acute hyperglycemia-induced human cardiac stem cell death by upregulating apoptosis and pyroptosis in vitro. Cell Death and Disease, 2020, 11, 186.	6.3	36
13	Editorial: The Non-coding Genome and Cardiovascular Disease. Frontiers in Cardiovascular Medicine, 2019, 6, 98.	2.4	2
14	Guidelines for evaluating myocardial cell death. American Journal of Physiology - Heart and Circulatory Physiology, 2019, 317, H891-H922.	3.2	135
15	Isolation, Characterization, and Differentiation of Cardiac Stem Cells from the Adult Mouse Heart. Journal of Visualized Experiments, 2019, , .	0.3	6
16	Hydrogen Sulfide Ameliorates Homocysteine-Induced Cardiac Remodeling and Dysfunction. Frontiers in Physiology, 2019, 10, 598.	2.8	31
17	mTOR Signaling in Cardiometabolic Disease, Cancer, and Aging 2018. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-3.	4.0	8
18	Transgenic Expression of miR-133a in the Diabetic Akita Heart Prevents Cardiac Remodeling and Cardiomyopathy. Frontiers in Cardiovascular Medicine, 2019, 6, 45.	2.4	26

#	Article	IF	CITATIONS
19	Hydrogen sulfide-mediated regulation of cell death signaling ameliorates adverse cardiac remodeling and diabetic cardiomyopathy. American Journal of Physiology - Heart and Circulatory Physiology, 2019, 316, H1237-H1252.	3.2	38
20	Exercise Training Promotes Cardiac Hydrogen Sulfide Biosynthesis and Mitigates Pyroptosis to Prevent High-Fat Diet-Induced Diabetic Cardiomyopathy. Antioxidants, 2019, 8, 638.	5.1	48
21	Regulating Inflammatory Cytokines in the Diabetic Heart. , 2019, , 427-436.		Ο
22	Epitope Mapping of SERCA2a Identifies an Antigenic Determinant That Induces Mainly Atrial Myocarditis in A/J Mice. Journal of Immunology, 2018, 200, 523-537.	0.8	13
23	MiR-133a Mimic Alleviates T1DM-Induced Systolic Dysfunction in Akita: An MRI-Based Study. Frontiers in Physiology, 2018, 9, 1275.	2.8	21
24	Isolation, Characterization and Differentiation of Mouse Cardiac Progenitor Cells. Methods in Molecular Biology, 2018, 1842, 183-191.	0.9	1
25	Targeting miRNA for Therapy of Juvenile and Adult Diabetic Cardiomyopathy. Advances in Experimental Medicine and Biology, 2018, 1056, 47-59.	1.6	15
26	Cardiacâ€specific Overexpression of MiRâ€133a Decreases Pyroptosis in Ins2 +/â^' T1DM Mice Heart. FASEB Journal, 2018, 32, 838.12.	0.5	0
27	Cardiacâ€specific Overexpression of MiRâ€133a in the Diabetic Heart Mitigates Mitochondrial Abnormality by Targeting TIM17A. FASEB Journal, 2018, 32, 752.5.	0.5	Ο
28	H2S and homocysteine control a novel feedback regulation of cystathionine beta synthase and cystathionine gamma lyase in cardiomyocytes. Scientific Reports, 2017, 7, 3639.	3.3	53
29	A novel role for miR-133a in centrally mediated activation of the renin-angiotensin system in congestive heart failure. American Journal of Physiology - Heart and Circulatory Physiology, 2017, 312, H968-H979.	3.2	17
30	Stem Cell-Derived Exosomes, Autophagy, Extracellular Matrix Turnover, and miRNAs in Cardiac Regeneration during Stem Cell Therapy. Stem Cell Reviews and Reports, 2017, 13, 79-91.	5.6	56
31	Diabetic Cardiomyopathy: An Immunometabolic Perspective. Frontiers in Endocrinology, 2017, 8, 72.	3.5	60
32	Cardiac transcriptome profiling of diabetic Akita mice using microarray and next generation sequencing. PLoS ONE, 2017, 12, e0182828.	2.5	40
33	Ablation of Matrix Metalloproteinase-9 Prevents Cardiomyocytes Contractile Dysfunction in Diabetics. Frontiers in Physiology, 2016, 7, 93.	2.8	19
34	Emerging role of hydrogen sulfide-microRNA crosstalk in cardiovascular diseases. American Journal of Physiology - Heart and Circulatory Physiology, 2016, 310, H802-H812.	3.2	35
35	Lack of miR-133a Decreases Contractility of Diabetic Hearts: A Role for Novel Cross Talk Between Tyrosine Aminotransferase and Tyrosine Hydroxylase. Diabetes, 2016, 65, 3075-3090.	0.6	47
36	The effect of exercise in some sport branches on urinary second messenger cyclic nucleotide levels. Cogent Medicine, 2016, 3, 1125411.	0.7	0

Paras Kumar Mishra

#	Article	IF	CITATIONS
37	Exercise ameliorates high fat diet induced cardiac dysfunction by increasing interleukin 10. Frontiers in Physiology, 2015, 6, 124.	2.8	44
38	Hydrogen sulfide mitigates homocysteine-mediated pathological remodeling by inducing miR-133a in cardiomyocytes. Molecular and Cellular Biochemistry, 2015, 404, 241-250.	3.1	29
39	MiRâ€133a Mitigates Mitophagy in Ins2 +/―Diabetic Heart. FASEB Journal, 2015, 29, 1040.1.	0.5	Ο
40	Harnessing fetal and adult genetic reprograming for therapy of heart disease. Journal of Nature and Science, 2015, 1, .	1.1	11
41	Induction of autophagy markers is associated with attenuation of miR-133a in diabetic heart failure patients undergoing mechanical unloading. American Journal of Translational Research (discontinued), 2015, 7, 683-96.	0.0	39
42	ls Mir-133a a Promising Therapeutic Target for Heart Failure?. Journal of Diabetes & Metabolism, 2014, 05, .	0.2	1
43	Attenuated dopaminergic tone in the paraventricular nucleus contributing to sympathoexcitation in rats with Type 2 diabetes. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2014, 306, R138-R148.	1.8	15
44	Differential Expression of Dicer, miRNAs, and Inflammatory Markers in Diabetic Ins2+/â^' Akita Hearts. Cell Biochemistry and Biophysics, 2014, 68, 25-35.	1.8	83
45	MicroRNomics of Diabetic Cardiomyopathy. , 2014, , 179-187.		2
46	Generating Double Knockout Mice to Model Genetic Intervention for Diabetic Cardiomyopathy in Humans. Methods in Molecular Biology, 2014, 1194, 385-400.	0.9	10
47	Cardiac matrix: A clue for future therapy. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2013, 1832, 2271-2276.	3.8	49
48	Predictors and prevention of diabetic cardiomyopathy. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 2013, 6, 151.	2.4	77
49	Cardiac Stem Cell Niche, MMP9, and Culture and Differentiation of Embryonic Stem Cells. Methods in Molecular Biology, 2013, 1035, 153-163.	0.9	11
50	Mitochondrial division inhibitor (Mdiviâ€I) ameliorates post myocardial infarction via stimulating stem cell by elevating level of MiRâ€499 in diabetes. FASEB Journal, 2013, 27, 1151.1.	0.5	0
51	Ablation of MMP9 ameliorates epigenetic modifications and mitigates diabetic cardiomyopathy. FASEB Journal, 2013, 27, 1129.3.	0.5	0
52	Increased endogenous H ₂ S generation by CBS, CSE, and 3MST gene therapy improves ex vivo renovascular relaxation in hyperhomocysteinemia. American Journal of Physiology - Cell Physiology, 2012, 303, C41-C51.	4.6	102
53	MicroRNA-133a regulates DNA methylation in diabetic cardiomyocytes. Biochemical and Biophysical Research Communications, 2012, 425, 668-672.	2.1	64
54	Hydrogen Sulfide Mitigates Cardiac Remodeling During Myocardial Infarction via Improvement of Angiogenesis. International Journal of Biological Sciences, 2012, 8, 430-441.	6.4	92

#	Article	IF	CITATIONS
55	Ablation of MMP9 induces survival and differentiation of cardiac stem cells into cardiomyocytes in the heart of diabetics: a role of extracellular matrix. Canadian Journal of Physiology and Pharmacology, 2012, 90, 353-360.	1.4	48
56	Role Of MMP9 In Cardiac Stem Cell Differentiation And Autophagy. FASEB Journal, 2012, 26, .	0.5	0
57	Epigenetic Reprogramming of Mitochondrial Dysfunction in hyperhomocysteinemia. FASEB Journal, 2012, 26, 701.17.	0.5	0
58	Exercise Mitigates Betaâ€2 Adrenergic Receptor Dysfunction By Decreasing Homocysteine In Diabetes. FASEB Journal, 2012, 26, 1076.2.	0.5	0
59	MiRâ€133 As An Epigenetic Regulator Of Diabetic Heart Failure. FASEB Journal, 2012, 26, 1057.22.	0.5	1
60	Chronic hyperhomocysteinemia causes vascular remodelling by instigating vein phenotype in artery. Archives of Physiology and Biochemistry, 2011, 117, 270-282.	2.1	8
61	Synergy of microRNA and Stem Cell: A Novel Therapeutic Approach for Diabetes Mellitus and Cardiovascular Diseases. Current Diabetes Reviews, 2011, 7, 367-376.	1.3	33
62	Exercise ameliorates diabetic cardiomyopathy by inducing beta2â€adrenergic receptors and miRâ€133a, and attenuating MMPâ€9. FASEB Journal, 2011, 25, 1032.4.	0.5	3
63	Exercise mitigates homocysteine - β2-adrenergic receptor interactions to ameliorate contractile dysfunction in diabetes. International Journal of Physiology, Pathophysiology and Pharmacology, 2011, 3, 97-106.	0.8	13
64	Homocysteine to Hydrogen Sulfide or Hypertension. Cell Biochemistry and Biophysics, 2010, 57, 49-58.	1.8	148
65	MMP-9 Gene Ablation and TIMP-4 Mitigate PAR-1-Mediated Cardiomyocyte Dysfunction: A Plausible Role of Dicer and miRNA. Cell Biochemistry and Biophysics, 2010, 57, 67-76.	1.8	39
66	Synergism in hyperhomocysteinemia and diabetes: role of PPAR gamma and tempol. Cardiovascular Diabetology, 2010, 9, 49.	6.8	58
67	Stem cells as a therapeutic target for diabetes. Frontiers in Bioscience - Landmark, 2010, 15, 461.	3.0	42
68	MMP-2/TIMP-2/TIMP-4 versus MMP-9/TIMP-3 in transition from compensatory hypertrophy and angiogenesis to decompensatory heart failure [*] . Archives of Physiology and Biochemistry, 2010, 116, 63-72.	2.1	66
69	H ₂ S ameliorates oxidative and proteolytic stresses and protects the heart against adverse remodeling in chronic heart failure. American Journal of Physiology - Heart and Circulatory Physiology, 2010, 298, H451-H456.	3.2	91
70	Attenuation of beta2-adrenergic receptors and homocysteine metabolic enzymes cause diabetic cardiomyopathy. Biochemical and Biophysical Research Communications, 2010, 401, 175-181.	2.1	31
71	Blood Flow Regulates Vasculature by Maintaining Collagen/elastin and MMP/TIMP ratio. FASEB Journal, 2010, 24, 790.3.	0.5	0
72	Role of dicer in diabetic cardiomyopathy through dysregulation of MMPâ€9 and TIMPâ€4. FASEB Journal, 2010. 24. 978.19.	0.5	0

Paras Kumar Mishra

#	Article	IF	CITATIONS
73	Folic acid mitigated homocysteineâ€mediated decrease in bone blood flow and bone remodeling. FASEB Journal, 2010, 24, 630.7.	0.5	Ο
74	Tetrahydrocurcumin ameliorates mtMMPâ€9 mediated mitophagy and mitochondria remodeling in Stroke. FASEB Journal, 2010, 24, 604.4.	0.5	0
75	Functional heterogeneity in vascular remodeling (MMPâ€9â^'/â^' and PARâ€1â^'/+) in hyperhomocysteinemic (CBSâ€/+) and diabetic (Akita, Ins2â^'/+) mice FASEB Journal, 2010, 24, 599.6.	0.5	0
76	Restoration of contractility in hyperhomocysteinemia by cardiac-specific deletion of NMDA-R1. American Journal of Physiology - Heart and Circulatory Physiology, 2009, 296, H887-H892.	3.2	35
77	Nitrotyrosinylation, remodeling and endothelialâ€myocyte uncoupling in iNOS, cystathionine beta synthase (CBS) knockouts and iNOS/CBS double knockout mice. Journal of Cellular Biochemistry, 2009, 106, 119-126.	2.6	26
78	MicroRNAs Are Involved in Homocysteine-Induced Cardiac Remodeling. Cell Biochemistry and Biophysics, 2009, 55, 153-162.	1.8	74
79	MicroRNAs as a therapeutic target for cardiovascular diseases. Journal of Cellular and Molecular Medicine, 2009, 13, 778-789.	3.6	137
80	Cerebroprotective role of Tetrahydro Curcumin in hyperhomocysteinemic ischemic mice by regulating NFâ€kappa B. FASEB Journal, 2009, 23, 614.7.	0.5	1
81	Role of MicroRNAs in homocysteine induced oxidative stress. FASEB Journal, 2009, 23, 1038.9.	0.5	0
82	Homocysteine, hydrogen sulfide (H2S) and NMDA-receptor in heart failure. Indian Journal of Biochemistry and Biophysics, 2009, 46, 441-6.	0.0	15
83	Homocysteine decreases blood flow to the brain due to vascular resistance in carotid artery. Neurochemistry International, 2008, 53, 214-219.	3.8	40
84	Assessing the putative roles of X–autosome and X–Y interactions in hybrid male sterility of the Drosophila bipectinata species complex. Genome, 2007, 50, 653-659.	2.0	11
85	Genetic interactions underlying hybrid male sterility in the Drosophila bipectinata species complex. Genes and Genetic Systems, 2006, 81, 193-200.	0.7	10
86	Drosophila bipectinata species complex: study of phylogenetic relationship among four members through the analysis of morphology of testes and seminal vesicles. Journal of Zoological Systematics and Evolutionary Research, 2006, 44, 175-179.	1.4	10
87	Unique phenotypes and variation in the sex comb patterns and their evolutionary implications in the Drosophila bipectinata species complex (Diptera: Drosophilidae). European Journal of Entomology, 2006, 103, 805-815.	1.2	7
88	Genetic basis of hybrid male sterility among three closely related species of Drosophila. Indian Journal of Experimental Biology, 2005, 43, 455-61.	0.0	0