Isabelle Oswald

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2355306/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Intestinal toxicity of the new type A trichothecenes, NX and 3ANX. Chemosphere, 2022, 288, 132415.	8.2	12
2	Tissular Genomic Responses to Oral FB1 Exposure in Pigs. Toxins, 2022, 14, 83.	3.4	2
3	The foodborne contaminant deoxynivalenol exacerbates DNA damage caused by a broad spectrum of genotoxic agents. Science of the Total Environment, 2022, 820, 153280.	8.0	8
4	Deoxynivalenol induces apoptosis and inflammation in the liver: Analysis using precision-cut liver slices. Food and Chemical Toxicology, 2022, 163, 112930.	3.6	16
5	Exposure of intestinal explants to NX, but not to DON, enriches the secretome in mitochondrial proteins. Archives of Toxicology, 2022, 96, 2609-2619.	4.2	5
6	Metabolism of versicolorin A, a genotoxic precursor of aflatoxin B1: Characterization of metabolites using in vitro production of standards. Food and Chemical Toxicology, 2022, 167, 113272.	3.6	1
7	Comparative sensitivity of proliferative and differentiated intestinal epithelial cells to the food contaminant, deoxynivalenol. Environmental Pollution, 2021, 277, 116818.	7.5	15
8	Statistical Integration of â€~Omics Data Increases Biological Knowledge Extracted from Metabolomics Data: Application to Intestinal Exposure to the Mycotoxin Deoxynivalenol. Metabolites, 2021, 11, 407.	2.9	3
9	Les mycotoxines en alimentation humaineÂ: un défi pour la recherche. Cahiers De Nutrition Et De Dietetique, 2021, 56, 170-183.	0.3	9
10	Versicolorin A enhances the genotoxicity of aflatoxin B1 in human liver cells by inducing the transactivation of the Ah-receptor. Food and Chemical Toxicology, 2021, 153, 112258.	3.6	14
11	Dietary Exposure to the Food Contaminant Deoxynivalenol Triggers Colonic Breakdown by Activating the Mitochondrial and the Death Receptor Pathways. Molecular Nutrition and Food Research, 2021, 65, e2100191.	3.3	13
12	Exposure to Zearalenone Leads to Metabolic Disruption and Changes in Circulating Adipokines Concentrations in Pigs. Toxins, 2021, 13, 790.	3.4	10
13	Effects of Fusarium metabolites beauvericin and enniatins alone or in mixture with deoxynivalenol on weaning piglets. Food and Chemical Toxicology, 2021, 158, 112719.	3.6	10
14	The Solvent Dimethyl Sulfoxide Affects Physiology, Transcriptome and Secondary Metabolism of Aspergillus flavus. Journal of Fungi (Basel, Switzerland), 2021, 7, 1055.	3.5	5
15	An in silico structural approach to characterize human and rainbow trout estrogenicity of mycotoxins: Proof of concept study using zearalenone and alternariol. Food Chemistry, 2020, 312, 126088.	8.2	20
16	Effects of Wheat Bran Applied to Maternal Diet on the Intestinal Architecture and Immune Gene Expression in Suckling Piglets. Animals, 2020, 10, 2051.	2.3	3
17	The brlA Gene Deletion Reveals That Patulin Biosynthesis Is Not Related to Conidiation in Penicillium expansum. International Journal of Molecular Sciences, 2020, 21, 6660.	4.1	9
18	Regulation of Secondary Metabolism in the Penicillium Genus. International Journal of Molecular Sciences, 2020, 21, 9462.	4.1	31

#	Article	IF	CITATIONS
19	Proteome changes induced by a short, non-cytotoxic exposure to the mycoestrogen zearalenone in the pig intestine. Journal of Proteomics, 2020, 224, 103842.	2.4	11
20	Risk assessment of aflatoxins in food. EFSA Journal, 2020, 18, e06040.	1.8	172
21	Aflatoxin Biosynthesis and Genetic Regulation: A Review. Toxins, 2020, 12, 150.	3.4	157
22	1H-NMR metabolomics response to a realistic diet contamination with the mycotoxin deoxynivalenol: Effect of probiotics supplementation. Food and Chemical Toxicology, 2020, 138, 111222.	3.6	11
23	The food contaminant, deoxynivalenol, modulates the Thelper/Treg balance and increases inflammatory bowel diseases. Archives of Toxicology, 2020, 94, 3173-3184.	4.2	28
24	Versicolorin A, a precursor in aflatoxins biosynthesis, is a food contaminant toxic for human intestinal cells. Environment International, 2020, 137, 105568.	10.0	20
25	Acute Exposure to Zearalenone Disturbs Intestinal Homeostasis by Modulating the Wnt/β-Catenin Signaling Pathway. Toxins, 2020, 12, 113.	3.4	11
26	Integrative analysis of blood and gut microbiota data suggests a non-alcoholic fatty liver disease (NAFLD)-related disorder in French SLAdd minipigs. Scientific Reports, 2020, 10, 234.	3.3	0
27	Mycotoxin mixtures in food and feed: holistic, innovative, flexible risk assessment modelling approach:. EFSA Supporting Publications, 2020, 17, 1757E.	0.7	38
28	Reduced toxicity of 3-epi-deoxynivalenol and de-epoxy-deoxynivalenol through deoxynivalenol bacterial biotransformation: In vivo analysis in piglets. Food and Chemical Toxicology, 2020, 140, 111241.	3.6	26
29	Dietary exposure to mycotoxins in the French infant total diet study. Food and Chemical Toxicology, 2020, 140, 111301.	3.6	28
30	In vitro and in vivo effects of a mycotoxin, deoxynivalenol, and a trace metal, cadmium, alone or in a mixture on the intestinal barrier. Environment International, 2019, 132, 105082.	10.0	53
31	Combined hazard assessment of mycotoxins and their modified forms applying relative potency factors: Zearalenone and T2/HT2 toxin. Food and Chemical Toxicology, 2019, 131, 110599.	3.6	33
32	Fumonisins at Doses below EU Regulatory Limits Induce Histological Alterations in Piglets. Toxins, 2019, 11, 548.	3.4	30
33	Combination of Isotope Labeling and Molecular Networking of Tandem Mass Spectrometry Data To Reveal 69 Unknown Metabolites Produced by <i>Penicillium nordicum</i> . Analytical Chemistry, 2019, 91, 12191-12202.	6.5	16
34	Individual and combined mycotoxins deoxynivalenol, nivalenol, and fusarenon-X induced apoptosis in lymphoid tissues of mice after oral exposure. Toxicon, 2019, 165, 83-94.	1.6	15
35	Effects of Mycotoxins on the Intestine. Toxins, 2019, 11, 159.	3.4	23
36	Deoxynivalenol inhibits the expression of trefoil factors (TFF) by intestinal human and porcine goblet cells. Archives of Toxicology, 2019, 93, 1039-1049.	4.2	17

#	Article	IF	CITATIONS
37	Morphologic, molecular and metabolic characterization of Aspergillus section Flavi in spices marketed in Lebanon. Scientific Reports, 2019, 9, 5263.	3.3	24
38	Individual and combined cytotoxicity of major trichothecenes type B, deoxynivalenol, nivalenol, and fusarenon-X on Jurkat human T cells. Toxicon, 2019, 160, 29-37.	1.6	11
39	A review on combined effects of moniliformin and co-occurring Fusarium toxins in farm animals. World Mycotoxin Journal, 2019, 12, 281-291.	1.4	22
40	Unusual acute neonatal mortality and sow agalactia linked with ergot alkaloid contamination of feed. Porcine Health Management, 2019, 5, 24.	2.6	7
41	Co-Occurrence of DON and Emerging Mycotoxins in Worldwide Finished Pig Feed and Their Combined Toxicity in Intestinal Cells. Toxins, 2019, 11, 727.	3.4	46
42	The protective role of liver X receptor (LXR) during fumonisin B1-induced hepatotoxicity. Archives of Toxicology, 2019, 93, 505-517.	4.2	34
43	Beneficial effects of Saccharomyces cerevisiae RC016 in weaned piglets: in vivo and ex vivo analysis. Beneficial Microbes, 2019, 10, 33-42.	2.4	18
44	Impact of <i>veA</i> on the development, aggressiveness, dissemination and secondary metabolism of <i>Penicillium expansum</i> . Molecular Plant Pathology, 2018, 19, 1971-1983.	4.2	40
45	Risks to human and animal health related to the presence of moniliformin in food and feed. EFSA Journal, 2018, 16, e05082.	1.8	22
46	Effect on public health of a possible increase of the maximum level for â€~aflatoxin total' from 4 to 10Âl¼g/kg in peanuts and processed products thereof, intended for direct human consumption or use as an ingredient in foodstuffs. EFSA Journal, 2018, 16, e05175.	1.8	21
47	Genotoxicity of aflatoxins and their precursors in human cells. Toxicology Letters, 2018, 287, 100-107.	0.8	86
48	From genomics to metabolomics, moving toward an integrated strategy for the discovery of fungal secondary metabolites. Natural Product Reports, 2018, 35, 147-173.	10.3	132
49	Update of the risk assessment on 3â€monochloropropane diol and its fatty acid esters. EFSA Journal, 2018, 16, e05083.	1.8	64
50	Mycotoxins and oxidative stress: where are we?. World Mycotoxin Journal, 2018, 11, 113-134.	1.4	107
51	Analysis of the interactions between environmental and food contaminants, cadmium and deoxynivalenol, in different target organs. Science of the Total Environment, 2018, 622-623, 841-848.	8.0	24
52	The importance of accounting for sex in the search of proteomic signatures of mycotoxin exposure. Journal of Proteomics, 2018, 178, 114-122.	2.4	20
53	Secondary metabolism in <i>Penicillium expansum</i> : Emphasis on recent advances in patulin research. Critical Reviews in Food Science and Nutrition, 2018, 58, 2082-2098.	10.3	71
54	Intestinal toxicity of deoxynivalenol is limited by Lactobacillus rhamnosus RC007 in pig jejunum explants. Archives of Toxicology, 2018, 92, 983-993.	4.2	51

#	Article	IF	CITATIONS
55	Porcine Small and Large Intestinal Microbiota Rapidly Hydrolyze the Masked Mycotoxin Deoxynivalenol-3-Glucoside and Release Deoxynivalenol in Spiked Batch Cultures <i>In Vitro</i> . Applied and Environmental Microbiology, 2018, 84, .	3.1	30
56	Risk to human health related to the presence of perfluorooctane sulfonic acid and perfluorooctanoic acid in food. EFSA Journal, 2018, 16, e05194.	1.8	171
57	Risk to human and animal health related to the presence of 4,15â€diacetoxyscirpenol in food and feed. EFSA Journal, 2018, 16, e05367.	1.8	16
58	Update of the Scientific Opinion on opium alkaloids in poppy seeds. EFSA Journal, 2018, 16, e05243.	1.8	31
59	Risk for animal and human health related to the presence of dioxins and dioxinâ€like PCBs in feed and food. EFSA Journal, 2018, 16, e05333.	1.8	110
60	Appropriateness to set a group healthâ€based guidance value for fumonisins and their modified forms. EFSA Journal, 2018, 16, e05172.	1.8	45
61	Occurrence and Identification of Aspergillus Section Flavi in the Context of the Emergence of Aflatoxins in French Maize. Toxins, 2018, 10, 525.	3.4	33
62	Review article: Role of satiety hormones in anorexia induction by Trichothecene mycotoxins. Food and Chemical Toxicology, 2018, 121, 701-714.	3.6	38
63	Overview and Comparison of Intestinal Organotypic Models, Intestinal Cells, and Intestinal Explants Used for Toxicity Studies. Current Topics in Microbiology and Immunology, 2018, 430, 247-264.	1.1	8
64	Update: methodological principles and scientific methods to be taken into account when establishing Reference Points for Action (RPAs) for nonâ€allowed pharmacologically active substances present in food of animal origin. EFSA Journal, 2018, 16, e05332.	1.8	5
65	Deepoxy-deoxynivalenol retains some immune-modulatory properties of the parent molecule deoxynivalenol in piglets. Archives of Toxicology, 2018, 92, 3381-3389.	4.2	30
66	Assessment of a decontamination process for dioxins and PCBs from fish meal by replacement of fish oil. EFSA Journal, 2018, 16, e05174.	1.8	2
67	Assessment of a decontamination process for dioxins and PCBs from fish meal by hexane extraction and replacement of fish oil. EFSA Journal, 2018, 16, e05173.	1.8	2
68	Ergot Alkaloids at Doses Close to EU Regulatory Limits Induce Alterations of the Liver and Intestine. Toxins, 2018, 10, 183.	3.4	27
69	Fumonisin-Exposure Impairs Age-Related Ecological Succession of Bacterial Species in Weaned Pig Gut Microbiota. Toxins, 2018, 10, 230.	3.4	32
70	Saccharomyces cerevisiae Boulardii Reduces the Deoxynivalenol-Induced Alteration of the Intestinal Transcriptome. Toxins, 2018, 10, 199.	3.4	21
71	Risks for animal health related to the presence of fumonisins, their modified forms and hidden forms in feed. EFSA Journal, 2018, 16, e05242.	1.8	56
72	Mycotoxins co-contamination: Methodological aspects and biological relevance of combined toxicity studies. Critical Reviews in Food Science and Nutrition, 2017, 57, 3489-3507.	10.3	195

#	Article	IF	CITATIONS
73	Appropriateness to set a group health based guidance value for T2 and HT2 toxin and its modified forms. EFSA Journal, 2017, 15, e04655.	1.8	37
74	The Food Contaminant Deoxynivalenol Exacerbates the Genotoxicity of Gut Microbiota. MBio, 2017, 8, .	4.1	60
75	Risks for public health related to the presence of tetrodotoxin (TTX) and TTX analogues in marine bivalves and gastropods. EFSA Journal, 2017, 15, e04752.	1.8	64
76	Co-exposure to low doses of the food contaminants deoxynivalenol and nivalenol has a synergistic inflammatory effect on intestinal explants. Archives of Toxicology, 2017, 91, 2677-2687.	4.2	71
77	Impact of mycotoxins on the intestine: are mucus and microbiota new targets?. Journal of Toxicology and Environmental Health - Part B: Critical Reviews, 2017, 20, 249-275.	6.5	141
78	Evidencing 98 secondary metabolites of Penicillium verrucosum using substrate isotopic labeling and high-resolution mass spectrometry. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2017, 1071, 29-43.	2.3	12
79	Impact of feed restriction and housing hygiene conditions on specific and inflammatory immune response, the cecal bacterial community and the survival of young rabbits. Animal, 2017, 11, 854-863.	3.3	25
80	Patulin transformation products and last intermediates in its biosynthetic pathway, E- and Z-ascladiol, are not toxic to human cells. Archives of Toxicology, 2017, 91, 2455-2467.	4.2	69
81	Assessment of a decontamination process for hydrocyanic acid in linseed intended for use in animal feed. EFSA Journal, 2017, 15, e05004.	1.8	Ο
82	Scientific opinion on the evaluation of substances as acceptable previous cargoes for edible fats and oils. EFSA Journal, 2017, 15, e04656.	1.8	12
83	Piperine inhibits aflatoxin B1 production in Aspergillus flavus by modulating fungal oxidative stress response. Fungal Genetics and Biology, 2017, 107, 77-85.	2.1	74
84	Risks for animal health related to the presence of zearalenone and its modified forms in feed. EFSA Journal, 2017, 15, e04851.	1.8	115
85	Identification of Signaling Pathways Targeted by the Food Contaminant FB1: Transcriptome and Kinome Analysis of Samples from Pig Liver and Intestine. Molecular Nutrition and Food Research, 2017, 61, 1700433.	3.3	32
86	Intestinal toxicity of the type B trichothecene mycotoxin fusarenon-X: whole transcriptome profiling reveals new signaling pathways. Scientific Reports, 2017, 7, 7530.	3.3	31
87	Determination of fumonisin B1 levels in body fluids and hair from piglets fed fumonisin B1-contaminated diets. Food and Chemical Toxicology, 2017, 108, 1-9.	3.6	25
88	Risks for human health related to the presence of pyrrolizidine alkaloids in honey, tea, herbal infusions and food supplements. EFSA Journal, 2017, 15, e04908.	1.8	112
89	Risks for public health related to the presence of furan and methylfurans in food. EFSA Journal, 2017, 15, e05005.	1.8	62
90	Aerosolization of Mycotoxins after Growth of Toxinogenic Fungi on Wallpaper. Applied and Environmental Microbiology, 2017, 83, .	3.1	32

#	Article	IF	CITATIONS
91	1 H NMR and MVA metabolomic profiles of urines from piglets fed with boluses contaminated with a mixture of five mycotoxins. Biochemistry and Biophysics Reports, 2017, 11, 9-18.	1.3	13
92	Deoxynivalenol in the liver and lymphoid organs of rats: effects of dose and duration on immunohistological changes. World Mycotoxin Journal, 2017, 10, 89-96.	1.4	19
93	Presence of free gossypol in whole cottonseed. EFSA Journal, 2017, 15, e04850.	1.8	13
94	Aspergillus korhogoensis, a Novel Aflatoxin Producing Species from the Côte d'Ivoire. Toxins, 2017, 9, 353.	3.4	36
95	Identification of the Anti-Aflatoxinogenic Activity of Micromeria graeca and Elucidation of Its Molecular Mechanism in Aspergillus flavus. Toxins, 2017, 9, 87.	3.4	33
96	Appropriateness to set a group health based guidance value for nivalenol and its modified forms. EFSA Journal, 2017, 15, e04751.	1.8	20
97	Assessment of decontamination processes for dioxins and dioxinâ€like PCBs in fish oil by physical filtration with activated carbon. EFSA Journal, 2017, 15, e05081.	1.8	1
98	Assessment of a decontamination process for dioxins and dioxinâ€like PCBs in fish oil by physical filtration with activated carbon. EFSA Journal, 2017, 15, e04961.	1.8	2
99	Risks to human and animal health related to the presence of deoxynivalenol and its acetylated and modified forms in food and feed. EFSA Journal, 2017, 15, e04718.	1.8	218
100	Deciphering the Anti-Aflatoxinogenic Properties of Eugenol Using a Large-Scale q-PCR Approach. Toxins, 2016, 8, 123.	3.4	48
101	Patulin is a cultivarâ€dependent aggressiveness factor favouring the colonization of apples by <scp><i>P</i></scp> <i>enicillium expansum</i> . Molecular Plant Pathology, 2016, 17, 920-930.	4.2	89
102	Erucic acid in feed and food. EFSA Journal, 2016, 14, e04593.	1.8	45
103	Acute health risks related to the presence of cyanogenic glycosides in raw apricot kernels and products derived from raw apricot kernels. EFSA Journal, 2016, 14, e04424.	1.8	19
104	Production of four macrocyclic trichothecenes by Stachybotrys chartarum during its development on different building materials as measured by UPLC-MS/MS. Building and Environment, 2016, 106, 265-273.	6.9	18
105	Toxicology of deoxynivalenol and its acetylated and modified forms. Archives of Toxicology, 2016, 90, 2931-2957.	4.2	232
106	Risks for human health related to the presence of 3―and 2â€monochloropropanediol (MCPD), and their fatty acid esters, and glycidyl fatty acid esters in food. EFSA Journal, 2016, 14, e04426.	1.8	100
107	Effects of patulin and ascladiol on porcine intestinal mucosa: An exÂvivo approach. Food and Chemical Toxicology, 2016, 98, 189-194.	3.6	33
108	Grape Pomace, an Agricultural Byproduct Reducing Mycotoxin Absorption: In Vivo Assessment in Pig Using Urinary Biomarkers. Journal of Agricultural and Food Chemistry, 2016, 64, 6762-6771.	5.2	31

#	Article	IF	CITATIONS
109	A study on the physicochemical parameters for <i><scp>P</scp>enicillium expansum</i> growth and patulin production: effect of temperature, pH, and water activity. Food Science and Nutrition, 2016, 4, 611-622.	3.4	60
110	Impact of food processing and detoxification treatments on mycotoxin contamination. Mycotoxin Research, 2016, 32, 179-205.	2.3	462
111	Microbial biotransformation of DON: molecular basis for reduced toxicity. Scientific Reports, 2016, 6, 29105.	3.3	128
112	Appropriateness to set a group healthâ€based guidance value for zearalenone and its modified forms. EFSA Journal, 2016, 14, e04425.	1.8	69
113	Impact of two mycotoxins deoxynivalenol and fumonisin on pig intestinal health. Porcine Health Management, 2016, 2, 21.	2.6	103
114	The mycotoxins deoxynivalenol and nivalenol show inÂvivo synergism on jejunum enterocytes apoptosis. Food and Chemical Toxicology, 2016, 87, 45-54.	3.6	30
115	Impact of mycotoxin on immune response and consequences for pig health. Animal Nutrition, 2016, 2, 63-68.	5.1	122
116	Intestinal toxicity of the masked mycotoxin deoxynivalenol-3-β-d-glucoside. Archives of Toxicology, 2016, 90, 2037-2046.	4.2	95
117	An LPS based method to stimulate the inflammatory response in growing rabbits. World Rabbit Science, 2016, 24, 55.	0.6	2
118	Risks for human and animal health related to the presence of phorbol esters in Jatropha kernel meal. EFSA Journal, 2015, 13, 4321.	1.8	8
119	Deoxynivalenol inhibits the expression by goblet cells of intestinal mucins through a PKR and MAP kinase dependent repression of the resistinâ€like molecule β. Molecular Nutrition and Food Research, 2015, 59, 1076-1087.	3.3	88
120	Nivalenol Has a Greater Impact than Deoxynivalenol on Pig Jejunum Mucosa in Vitro on Explants and in Vivo on Intestinal Loops. Toxins, 2015, 7, 1945-1961.	3.4	53
121	Ganho de peso, consumo de ração e histologia de órgãos de leitões alimentados com rações contendo baixos nÃveis de fumonisina B1. Pesquisa Veterinaria Brasileira, 2015, 35, 451-455.	0.5	3
122	The Food-Associated Ribotoxin Deoxynivalenol Modulates Inducible NO Synthase in Human Intestinal Cell Model. Toxicological Sciences, 2015, 145, 372-382.	3.1	39
123	Toxicological interactions between the mycotoxins deoxynivalenol, nivalenol and their acetylated derivatives in intestinal epithelial cells. Archives of Toxicology, 2015, 89, 1337-1346.	4.2	119
124	Occurrence of mycotoxins in cassava (Manihot esculenta Crantz) and its products. International Journal of Food Safety, Nutrition and Public Health, 2015, 5, 217.	0.1	4
125	Deoxynivalenol alone or in combination with nivalenol and zearalenone induce systemic histological changes in pigs. Experimental and Toxicologic Pathology, 2015, 67, 89-98.	2.1	105
126	Pattern recognition receptors in the gut: analysis of their expression along the intestinal tract and the crypt/villus axis. Physiological Reports, 2015, 3, e12225.	1.7	45

#	Article	IF	CITATIONS
127	Genome-wide immunity studies in the rabbit: transcriptome variations in peripheral blood mononuclear cells after in vitro stimulation by LPS or PMA-Ionomycin. BMC Genomics, 2015, 16, 26.	2.8	21
128	Development of a real-time PCR assay for Penicillium expansum quantification and patulin estimation in apples. Food Microbiology, 2015, 50, 28-37.	4.2	36
129	Quantitative Feed Restriction Rather Than Caloric Restriction Modulates the Immune Response of Growing Rabbits. Journal of Nutrition, 2015, 145, 483-489.	2.9	9
130	New insights into the organ-specific adverse effects of fumonisin B1: comparison between lung and liver. Archives of Toxicology, 2015, 89, 1619-1629.	4.2	47
131	Mycoplasma vaccination responses in immunodepressed weanling pigs supplemented with S. cerevisiae boulardii. Animal Production Science, 2015, 55, 1528.	1.3	0
132	Extensive Expression Differences along Porcine Small Intestine Evidenced by Transcriptome Sequencing. PLoS ONE, 2014, 9, e88515.	2.5	44
133	Lactobacillus amylovorus Inhibits the TLR4 Inflammatory Signaling Triggered by Enterotoxigenic Escherichia coli via Modulation of the Negative Regulators and Involvement of TLR2 in Intestinal Caco-2 Cells and Pig Explants. PLoS ONE, 2014, 9, e94891.	2.5	123
134	Mycotoxins that affect the North American agri-food sector: state of the art and directions for the future. World Mycotoxin Journal, 2014, 7, 63-82.	1.4	34
135	Early modulation of the cecal microbial activity in the young rabbit with rapidly fermentable fiber: Impact on health and growth1. Journal of Animal Science, 2014, 92, 5551-5559.	0.5	6
136	Effect of Deoxynivalenol and Other Type B Trichothecenes on the Intestine: A Review. Toxins, 2014, 6, 1615-1643.	3.4	257
137	Analysis of the contrast between natural occurrence of toxigenic AspergilliÂof the Flavi section and aflatoxin B1 in cassava. Food Microbiology, 2014, 38, 151-159.	4.2	40
138	Sequencing, physical organization and kinetic expression of the patulin biosynthetic gene cluster from Penicillium expansum. International Journal of Food Microbiology, 2014, 189, 51-60.	4.7	88
139	The gene PatG involved in the biosynthesis pathway of patulin, a food-borne mycotoxin, encodes a 6-methylsalicylic acid decarboxylase. International Journal of Food Microbiology, 2014, 171, 77-83.	4.7	42
140	Biotransformation Approaches To Alleviate the Effects Induced by Fusarium Mycotoxins in Swine. Journal of Agricultural and Food Chemistry, 2013, 61, 6711-6719.	5.2	53
141	The emerging mycotoxin, enniatin B1, down-modulates the gastrointestinal toxicity of T-2 toxin in vitro on intestinal epithelial cells and ex vivo on intestinal explants. Archives of Toxicology, 2013, 87, 2233-2241.	4.2	38
142	The food contaminant deoxynivalenol activates the mitogen activated protein kinases in the intestine: Interest of exÂvivo models as an alternative to inÂvivo experiments. Toxicon, 2013, 66, 31-36.	1.6	90
143	The peripheral blood transcriptome reflects variations in immunity traits in swine: towards the identification of biomarkers. BMC Genomics, 2013, 14, 894.	2.8	37
144	Deoxynivalenol impairs the immune functions of neutrophils. Molecular Nutrition and Food Research, 2013, 57, 1026-1036.	3.3	22

#	Article	IF	CITATIONS
145	Distribution and toxigenicity of Aspergillus section Flavi in spices marketed inÂMorocco. Food Control, 2013, 32, 143-148.	5.5	41
146	Masked mycotoxins: A review. Molecular Nutrition and Food Research, 2013, 57, 165-186.	3.3	633
147	New insights into mycotoxin mixtures: The toxicity of low doses of Type B trichothecenes on intestinal epithelial cells is synergistic. Toxicology and Applied Pharmacology, 2013, 272, 191-198.	2.8	174
148	New Untargeted Metabolic Profiling Combining Mass Spectrometry and Isotopic Labeling: Application on Aspergillus fumigatus Grown on Wheat. Analytical Chemistry, 2013, 85, 8412-8420.	6.5	28
149	Effect of Low Dose of Fumonisins on Pig Health: Immune Status, Intestinal Microbiota and Sensitivity to Salmonella. Toxins, 2013, 5, 841-864.	3.4	57
150	Validation study on urinary biomarkers of exposure for aflatoxin B1, ochratoxin A, fumonisin B1, deoxynivalenol and zearalenone in piglets. World Mycotoxin Journal, 2013, 6, 299-308.	1.4	61
151	Deoxynivalenol as a New Factor in the Persistence of Intestinal Inflammatory Diseases: An Emerging Hypothesis through Possible Modulation of Th17-Mediated Response. PLoS ONE, 2013, 8, e53647.	2.5	91
152	Current Situation of Mycotoxin Contamination and Co-occurrence in Animal Feed—Focus on Europe. Toxins, 2012, 4, 788-809.	3.4	499
153	Toxicity of Deoxynivalenol and Its Acetylated Derivatives on the Intestine: Differential Effects on Morphology, Barrier Function, Tight Junction Proteins, and Mitogen-Activated Protein Kinases. Toxicological Sciences, 2012, 130, 180-190.	3.1	208
154	Nuclear Magnetic Resonance Analysis of Glucose Levels in Weanling Piglets Plasma as a Function of Deoxynivalenol Exposure. , 2012, 2012, 1-5.		2
155	The fungal T-2 toxin alters the activation of primary macrophages induced by TLR-agonists resulting in a decrease of the inflammatory response in the pig. Veterinary Research, 2012, 43, 35.	3.0	34
156	Chronic ingestion of deoxynivalenol and fumonisin, alone or in interaction, induces morphological and immunological changes in the intestine of piglets. British Journal of Nutrition, 2012, 107, 1776-1786.	2.3	220
157	Trypacidin, a Spore-Borne Toxin from Aspergillus fumigatus, Is Cytotoxic to Lung Cells. PLoS ONE, 2012, 7, e29906.	2.5	78
158	Phytic acid protects porcine intestinal epithelial cells from deoxynivalenol (DON) cytotoxicity. Experimental and Toxicologic Pathology, 2012, 64, 345-347.	2.1	19
159	The low intestinal and hepatic toxicity of hydrolyzed fumonisin B1 correlates with its inability to alter the metabolism of sphingolipids. Biochemical Pharmacology, 2012, 83, 1465-1473.	4.4	107
160	Structural and functional development of small intestine in intrauterine growth retarded porcine offspring born to gilts fed diets with differing protein ratios throughout pregnancy. Journal of Physiology and Pharmacology, 2012, 63, 225-39.	1.1	33
161	Immunity Traits in Pigs: Substantial Genetic Variation and Limited Covariation. PLoS ONE, 2011, 6, e22717.	2.5	86
162	Mycotoxin co-contamination of food and feed: meta-analysis of publications describing toxicological interactions. World Mycotoxin Journal, 2011, 4, 285-313.	1.4	259

#	Article	IF	CITATIONS
163	The immunohistochemical localization of the glycosphingolipid asialo-GM1 in the intestine of weaned piglets. Acta Histochemica, 2011, 113, 103-108.	1.8	0
164	Transcriptomic and nuclear architecture of immune cells after LPS activation. Chromosoma, 2011, 120, 501-520.	2.2	14
165	Deciphering the genetic control of innate and adaptive immune responses in pig: a combined genetic and genomic study. BMC Proceedings, 2011, 5, S32.	1.6	23
166	Individual and combined effects of subclinical doses of deoxynivalenol and fumonisins in piglets. Molecular Nutrition and Food Research, 2011, 55, 761-771.	3.3	96
167	Transcriptome analysis of porcine PBMCs after in vitro stimulation by LPS or PMA/ionomycin using an expression array targeting the pig immune response. BMC Genomics, 2010, 11, 292.	2.8	73
168	Biosynthesis and Toxicological Effects of Patulin. Toxins, 2010, 2, 613-631.	3.4	461
169	Deoxynivalenol Impairs Porcine Intestinal Barrier Function and Decreases the Protein Expression of Claudin-4 through a Mitogen-Activated Protein Kinase-Dependent Mechanism ,. Journal of Nutrition, 2010, 140, 1956-1962.	2.9	199
170	Consumption of fumonisin B1 for 9 days induces stress proteins along the gastrointestinal tract of pigs. Toxicon, 2010, 55, 244-249.	1.6	20
171	Comparative aspects of <i>in vitro</i> proliferation of human and porcine lymphocytes exposed to mycotoxins. Archives of Animal Nutrition, 2010, 64, 383-393.	1.8	46
172	Experimental Trial of the Effect of Fumonisin B1 and the PRRS Virus in Swine. Journal of Animal and Veterinary Advances, 2010, 9, 1301-1310.	0.1	16
173	Impact of Deoxynivalenol on the Intestinal Microflora of Pigs. International Journal of Molecular Sciences, 2009, 10, 1-17.	4.1	98
174	Intestinal Physiology and Peptidase Activity in Male Pigs Are Modulated by Consumption of Corn Culture Extracts Containing Fumonisins. Journal of Nutrition, 2009, 139, 1303-1307.	2.9	24
175	Molecular cloning and functional characterization of two CYP619 cytochrome P450s involved in biosynthesis of patulin in Aspergillus clavatus. Microbiology (United Kingdom), 2009, 155, 1738-1747.	1.8	95
176	The food contaminant deoxynivalenol, decreases intestinal barrier permeability and reduces claudin expression. Toxicology and Applied Pharmacology, 2009, 237, 41-48.	2.8	280
177	Nuclear architecture of resting and LPS-stimulated porcine neutrophils by 3D FISH. Chromosome Research, 2009, 17, 847-862.	2.2	14
178	Influence of administration route on the biotransformation of amoxicillin in the pig. Journal of Veterinary Pharmacology and Therapeutics, 2009, 32, 241-248.	1.3	20
179	The mycotoxin Deoxynivalenol inhibits the cell surface expression of activation markers in human macrophages. Toxicology, 2009, 262, 239-244.	4.2	32
180	Development of a pig jejunal explant culture for studying the gastrointestinal toxicity of the mycotoxin deoxynivalenol: Histopathological analysis. Toxicology in Vitro, 2009, 23, 1580-1584.	2.4	87

#	Article	IF	CITATIONS
181	Comparative effects of a prenatal stress occurring during early or late gestation on pig immune response. Physiology and Behavior, 2009, 98, 498-504.	2.1	30
182	Comparative effect of orally administered sodium butyrate before or after weaning on growth and several indices of gastrointestinal biology of piglets. British Journal of Nutrition, 2009, 102, 1285-1296.	2.3	89
183	Natural alternatives to in-feed antibiotics in pig production: can immunomodulators play a role?. Animal, 2009, 3, 1644-1661.	3.3	72
184	Dietary glucomannan improves the vaccinal response in pigs exposed to aflatoxin B1 or T-2 toxin. World Mycotoxin Journal, 2009, 2, 161-172.	1.4	18
185	Review of mycotoxinâ€detoxifying agents used as feed additives: mode of action, efficacy and feed/food safety. EFSA Supporting Publications, 2009, 6, .	0.7	99
186	The food contaminant fumonisin B1reduces the maturation of porcine CD11R1+intestinal antigen presenting cells and antigen-specific immune responses, leading to a prolonged intestinal ETEC infection. Veterinary Research, 2009, 40, 40.	3.0	79
187	Subclinical doses of T-2 toxin impair acquired immune response and liver cytochrome P450 in pigs. Toxicology, 2008, 247, 46-54.	4.2	72
188	Intraperitoneal infection with <i>Salmonella abortusovis</i> is partially controlled by a gene closely linked with the <i>Ity</i> gene. Clinical and Experimental Immunology, 2008, 87, 373-378.	2.6	14
189	Immunotoxicity of aflatoxin B1: Impairment of the cell-mediated response to vaccine antigen and modulation of cytokine expression. Toxicology and Applied Pharmacology, 2008, 231, 142-149.	2.8	216
190	Ingestion of deoxynivalenol (DON) contaminated feed alters the pig vaccinal immune responses. Toxicology Letters, 2008, 177, 215-222.	0.8	125
191	La réalité des mycotoxines. Sciences Des Aliments, 2008, 28, 257-264.	0.2	0
192	Selective impairment of drug-metabolizing enzymes in pig liver during subchronic dietary exposure to aflatoxin B1. Food and Chemical Toxicology, 2007, 45, 2145-2154.	3.6	45
193	Effects of added fermentable carbohydrates in the diet on intestinal proinflammatory cytokine-specific mRNA content in weaning piglets1. Journal of Animal Science, 2007, 85, 673-683.	0.5	40
194	The intestine as a possible target for fumonisin toxicity. Molecular Nutrition and Food Research, 2007, 51, 925-931.	3.3	112
195	Fumonisin B1 alters cell cycle progression and interleukinâ€2 synthesis in swine peripheral blood mononuclear cells. Molecular Nutrition and Food Research, 2007, 51, 1406-1412.	3.3	29
196	Swine infection with Trichinella spiralis: Comparative analysis of the mucosal intestinal and systemic immune responses. Veterinary Parasitology, 2007, 143, 122-130.	1.8	25
197	Effects of an illicit cocktail on serum immunoglobulins, lymphocyte proliferation and cytokine gene expression in the veal calf. Toxicology, 2007, 242, 39-51.	4.2	16
198	Fumonisin B1 exposure and its selective effect on porcine jejunal segment: Sphingolipids, glycolipids and trans-epithelial passage disturbance. Biochemical Pharmacology, 2007, 74, 144-152.	4.4	46

#	Article	IF	CITATIONS
199	The inability of Byssochlamys fulva to produce patulin is related to absence of 6-methylsalicylic acid synthase and isoepoxydon dehydrogenase genes. International Journal of Food Microbiology, 2007, 115, 131-139.	4.7	43
200	Cytokine mRNA profiles in pigs exposed prenatally and postnatally toSchistosoma japonicum. Veterinary Research, 2007, 38, 25-36.	3.0	13
201	Effect of subacute oral doses of nivalenol on immune and metabolic defence systems in mice. Veterinary Research, 2007, 38, 635-646.	3.0	13
202	Effect of various doses of deoxynivalenol on liver xenobiotic metabolizing enzymes in mice. Food and Chemical Toxicology, 2006, 44, 476-483.	3.6	36
203	Mycotoxin fumonisin B1 selectively down-regulates the basal IL-8 expression in pig intestine: in vivo and in vitro studies. Food and Chemical Toxicology, 2006, 44, 1768-1773.	3.6	73
204	Ingestion of low doses of deoxynivalenol does not affect hematological, biochemical, or immune responses of piglets1. Journal of Animal Science, 2006, 84, 1935-1942.	0.5	74
205	Sex-related differences in the immune response of weanling piglets exposed to low doses of fumonisin extract. British Journal of Nutrition, 2006, 95, 1185-1192.	2.3	55
206	Role of intestinal epithelial cells in the innate immune defence of the pig intestine. Veterinary Research, 2006, 37, 359-368.	3.0	123
207	Oral exposure to culture material extract containing fumonisins predisposes swine to the development of pneumonitis caused by Pasteurella multocida. Toxicology, 2005, 213, 34-44.	4.2	66
208	Alternatives to in-feed antibiotics in pigs: Evaluation of probiotics, zinc or organic acids as protective agents for the intestinal mucosa. A comparison of in vitro and in vivo results. Animal Research, 2005, 54, 203-218.	0.6	71
209	Host Immune Status Influences the Development of Attaching and Effacing Lesions in Weaned Pigs. Infection and Immunity, 2005, 73, 5514-5523.	2.2	20
210	Mycotoxin Fumonisin B1 Alters the Cytokine Profile and Decreases the Vaccinal Antibody Titer in Pigs. Toxicological Sciences, 2005, 84, 301-307.	3.1	90
211	Byssochlamys nivea as a Source of Mycophenolic Acid. Applied and Environmental Microbiology, 2005, 71, 550-553.	3.1	59
212	The effects of mycotoxins, fungal food contaminants, on the intestinal epithelial cell-derived innate immune response. Veterinary Immunology and Immunopathology, 2005, 108, 199-209.	1.2	148
213	Immunotoxicological risk of mycotoxins for domestic animals. Food Additives and Contaminants, 2005, 22, 354-360.	2.0	164
214	Individual and combined effects of low oral doses of deoxynivalenol and nivalenol in mice. Cellular and Molecular Biology, 2005, 51 Suppl, OL809-17.	0.9	4
215	Gut function and dysfunction in young pigs: physiology. Animal Research, 2004, 53, 301-316.	0.6	250
216	Postnatal development of intestinal immune system in piglets: implications for the process of weaning. Animal Research, 2004, 53, 325-334.	0.6	93

#	Article	IF	CITATIONS
217	Development of a Macroarray To Specifically Analyze Immunological Gene Expression in Swine. Vaccine Journal, 2004, 11, 691-698.	2.6	34
218	Weaning Is Associated with an Upregulation of Expression of Inflammatory Cytokines in the Intestine of Piglets. Journal of Nutrition, 2004, 134, 641-647.	2.9	478
219	Pathophysiological changes occurring duringEscherichia coliendotoxin andPasteurella multocidachallenge in piglets: relationship with cough and temperature and predicitive value for intensity of lesions. Veterinary Research, 2004, 35, 309-324.	3.0	10
220	The Mycotoxin Fumonisin B1 Alters the Proliferation and the Barrier Function of Porcine Intestinal Epithelial Cells. Toxicological Sciences, 2003, 77, 165-171.	3.1	151
221	Cytokine mRNA expression profiles in lymphoid tissues of pigs naturally affected by postweaning multisystemic wasting syndrome. Journal of General Virology, 2003, 84, 2117-2125.	2.9	106
222	Mycotoxin Fumonisin B 1 Increases Intestinal Colonization by Pathogenic Escherichia coli in Pigs. Applied and Environmental Microbiology, 2003, 69, 5870-5874.	3.1	129
223	Changes in performance, blood parameters, humoral and cellular immune responses in weanling piglets exposed to low doses of aflatoxin1. Journal of Animal Science, 2002, 80, 1250-1257.	0.5	144
224	Nitric Oxide in Schistosomiasis. , 2002, , 343-360.		1
225	Cytokine mRNA expression in pigs infected with Schistosoma japonicum. Parasitology, 2001, 122, 299-307.	1.5	40
226	Parasitology and immunology of mice vaccinated with irradiated Litomosoides sigmodontis larvae. Parasitology, 2000, 120, 271-280.	1.5	51
227	Cloning, chromosomal location, and tissue expression of the gene for pig interleukin-18. Immunogenetics, 2000, 51, 358-365.	2.4	15
228	Inhibitory activity of anti-interleukin-4 and anti-interleukin-10 antibodies on Toxoplasma gondii proliferation in mouse peritoneal macrophages cocultured with splenocytes from infected mice. Parasitology Research, 2000, 86, 151-157.	1.6	14
229	Lack of a Role of Cytotoxic Necrotizing Factor 1 Toxin from Escherichia coli in Bacterial Pathogenicity and Host Cytokine Response in Infected Germfree Piglets. Infection and Immunity, 2000, 68, 839-847.	2.2	48
230	Changing reactivity of caprine and ovine mononuclear phagocytes throughout part of the life cycle of Oestrus ovis: assessment through spontaneous and inductible NO production. Veterinary Research, 1999, 30, 371-6.	3.0	5
231	Tumor necrosis factor is required for the priming of peritoneal macrophages by trehalose dimycolate. European Cytokine Network, 1999, 10, 533-40.	2.0	18
232	Failure of P strain mice to respond to vaccination against schistosomiasis correlates with impaired production of IL-12 and up-regulation of Th2 cytokines that inhibit macrophage activation. European Journal of Immunology, 1998, 28, 1762-1772.	2.9	9
233	A reverse transcription-polymerase chain reaction method to analyze porcine cytokine gene expression. Veterinary Immunology and Immunopathology, 1997, 58, 287-300.	1.2	100
234	Immune response to the filaria Litomosoides sigmodontis in susceptible and resistant mice. Parasite Immunology, 1997, 19, 273-279.	1.5	32

#	Article	IF	CITATIONS
235	Developmental differences determine larval susceptibility to nitric oxide-mediated killing in a murine model of vaccination against Schistosoma mansoni. Infection and Immunity, 1997, 65, 219-226.	2.2	58
236	Interleukin-12 synthesis is a required step in trehalose dimycolate-induced activation of mouse peritoneal macrophages. Infection and Immunity, 1997, 65, 1364-1369.	2.2	46
237	Nitrogen Oxide in Host Defense against Parasites. Methods, 1996, 10, 8-14.	3.8	21
238	Calpain is the target antigen of a Th1 clone that transfers protective immunity against Schistosoma mansoni. Journal of Immunology, 1996, 157, 806-14.	0.8	50
239	Pathologic study of an experimental canine arthritis induced with Complete Freund's Adjuvant. Clinical and Experimental Rheumatology, 1996, 14, 633-41.	0.8	8
240	Endothelial cells are activated by cytokine treatment to kill an intravascular parasite, Schistosoma mansoni, through the production of nitric oxide Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 999-1003.	7.1	108
241	Endogenous interleukin 12 (IL-12) regulates granuloma formation induced by eggs of Schistosoma mansoni and exogenous IL-12 both inhibits and prophylactically immunizes against egg pathology Journal of Experimental Medicine, 1994, 179, 1551-1561.	8.5	278
242	Demonstration of the target molecule of a protective IgE antibody in secretory glands of Schistosoma japonicum larvae. International Immunology, 1994, 6, 963-971.	4.0	52
243	Growth inhibition of Mycobacterium bovis by IFN-Î ³ stimulated macrophages: regulation by endogenous tumor necrosis factor-α and by IL-10. International Immunology, 1994, 6, 693-700.	4.0	126
244	NO as an affector molecule of parasite killing: modulation of its synthesis by cytokines. Comparative Biochemistry and Physiology C, Comparative Pharmacology and Toxicology, 1994, 108, 11-18.	0.5	66
245	Elevated expression of Th1 cytokines and nitric oxide synthase in the lungs of vaccinated mice after challenge infection with Schistosoma mansoni. Journal of Immunology, 1994, 153, 5200-9.	0.8	86
246	IL-12 inhibits Th2 cytokine responses induced by eggs of Schistosoma mansoni. Journal of Immunology, 1994, 153, 1707-13.	0.8	75
247	Regulatory and immunopathological roles of IL4 in experimental schistosomiasis. Research in Immunology, 1993, 144, 643-648.	0.9	2
248	Toxoplasma gondii induces a T-independent IFN-gamma response in natural killer cells that requires both adherent accessory cells and tumor necrosis factor-alpha. Journal of Immunology, 1993, 150, 3982-9.	0.8	199
249	Interleukin 10 inhibits macrophage microbicidal activity by blocking the endogenous production of tumor necrosis factor alpha required as a costimulatory factor for interferon gamma-induced activation Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 8676-8680.	7.1	338
250	Low response of BALB/c macrophages to priming and activating signals. Journal of Leukocyte Biology, 1992, 52, 315-322.	3.3	41
251	Role of T-Cell Derived Cytokines in the Downregulation of Immune Responses in Parasitic and Retroviral Infection. Immunological Reviews, 1992, 127, 183-204.	6.0	484
252	The microbicidal activity of interferon-γ-treated macrophages againstTrypanosoma cruzi involves an L-arginine-dependent, nitrogen oxide-mediated mechanism inhibitable by interleukin-10 and transforming growth factor-β. European Journal of Immunology, 1992, 22, 2501-2506.	2.9	456

#	Article	IF	CITATIONS
253	IL-10 inhibits parasite killing and nitrogen oxide production by IFN-gamma-activated macrophages. Journal of Immunology, 1992, 148, 1792-6.	0.8	537
254	IL-10 synergizes with IL-4 and transforming growth factor-beta to inhibit macrophage cytotoxic activity. Journal of Immunology, 1992, 148, 3578-82.	0.8	318
255	Antiproliferative effects of NO synthase products. Research in Immunology, 1991, 142, 580-583.	0.9	6
256	Nitric oxide and host defence. Research in Immunology, 1991, 142, 591-592.	0.9	0
257	Stimulation of antimycobacterial activity in mouse peritoneal macrophages by priming with trehalose dimycolate (TDM). FEMS Microbiology Letters, 1991, 76, 257-268.	1.8	4
258	Stimulation of antimycobacterial activity in mouse peritoneal macrophages by priming with trehalose dimycolate (TDM). FEMS Microbiology Letters, 1991, 76, 257-267.	1.8	1
259	Experimental ovine salmonellosis (Salmonella Abortusovis): Pathogenesis and vaccination. Research in Microbiology, 1990, 141, 945-953.	2.1	35
260	Classical and alternative pathway haemolytic activities of ovine complement: Variations with age and sex. Veterinary Immunology and Immunopathology, 1990, 24, 259-266.	1.2	22