Isabelle Oswald

List of Publications by Year in descending order

[^0]

1 Intestinal toxicity of the new type A trichothecenes, NX and 3ANX. Chemosphere, 2022, 288, 132415.
4.2

12

2 Tissular Genomic Responses to Oral FB1 Exposure in Pigs. Toxins, 2022, 14, 83.
1.5

The foodborne contaminant deoxynivalenol exacerbates DNA damage caused by a broad spectrum of
genotoxic agents. Science of the Total Environment, 2022, 820, 153280.

Deoxynivalenol induces apoptosis and inflammation in the liver: Analysis using precision-cut liver slices. Food and Chemical Toxicology, 2022, 163, 112930.

Exposure of intestinal explants to NX, but not to DON, enriches the secretome in mitochondrial proteins. Archives of Toxicology, 2022, 96, 2609-2619.
1.9

Metabolism of versicolorin A, a genotoxic precursor of aflatoxin B1: Characterization of metabolites
using in vitro production of standards. Food and Chemical Toxicology, 2022, 167, 113272.

Comparative sensitivity of proliferative and differentiated intestinal epithelial cells to the food
$7 \quad \begin{aligned} & \text { Comparative sensitivity of proliferative and differentiated intestinal epithelia } \\ & \text { contaminant, deoxynivalenol. Environmental Pollution, 2021, 277, } 116818 .\end{aligned}$
$3.7 \quad 15$

Statistical Integration of â \AA^{\sim} Omics Data Increases Biological Knowledge Extracted from Metabolomics
Data: Application to Intestinal Exposure to the Mycotoxin Deoxynivalenol. Metabolites, 2021, 11, 407.

9 Les mycotoxines en alimentation humaineÂ: un d \tilde{A} @fi pour la recherche. Cahiers De Nutrition Et De
9 Dietetique, 2021, 56, 170-183.

10 Versicolorin A enhances the genotoxicity of aflatoxin B1 in human liver cells by inducing the
transactivation of the Ah-receptor. Food and Chemical Toxicology, 2021, 153, 112258.
Dietary Exposure to the Food Contaminant Deoxynivalenol Triggers Colonic Breakdown by Activating
the Mitochondrial and the Death Receptor Pathways. Molecular Nutrition and Food Research, 2021, 65, e2100191.

12 Exposure to Zearalenone Leads to Metabolic Disruption and Changes in Circulating Adipokines
Concentrations in Pigs. Toxins, 2021, 13, 790.

Effects of Fusarium metabolites beauvericin and enniatins alone or in mixture with deoxynivalenol on
weaning piglets. Food and Chemical Toxicology, 2021, 158, 112719.

The Solvent Dimethyl Sulfoxide Affects Physiology, Transcriptome and Secondary Metabolism of Aspergillus flavus. Journal of Fungi (Basel, Switzerland), 2021, 7, 1055.

An in silico structural approach to characterize human and rainbow trout estrogenicity of
15 mycotoxins: Proof of concept study using zearalenone and alternariol. Food Chemistry, 2020, 312,
4.2
126088.

Effects of Wheat Bran Applied to Maternal Diet on the Intestinal Architecture and Immune Gene
Expression in Suckling Piglets. Animals, 2020, 10, 2051.

The brlA Gene Deletion Reveals That Patulin Biosynthesis Is Not Related to Conidiation in Penicillium
expansum. International Journal of Molecular Sciences, 2020, 21, 6660.
1.8

9
21 Aflatoxin Biosynthesis and Genetic Regulation: A Review. Toxins, 2020, 12, 150.

22 1H-NMR metabolomics response to a realistic diet contamination with the mycotoxin deoxynivalenol:
1.8

Effect of probiotics supplementation. Food and Chemical Toxicology, 2020, 138, 111222.

The food contaminant, deoxynivalenol, modulates the Thelper/Treg balance and increases
inflammatory bowel diseases. Archives of Toxicology, 2020, 94, 3173-3184.
1.9

28

Versicolorin A, a precursor in aflatoxins biosynthesis, is a food contaminant toxic for human
intestinal cells. Environment International, 2020, 137, 105568.
4.8

20

25 Acute Exposure to Zearalenone Disturbs Intestinal Homeostasis by Modulating the Wnt/î2-Catenin
Signaling Pathway. Toxins, 2020, 12, 113.
1.5

11

Integrative analysis of blood and gut microbiota data suggests a non-alcoholic fatty liver disease (NAFLD)-related disorder in French SLAdd minipigs. Scientific Reports, 2020, 10, 234.
27 Mycotoxin mixtures in food and feed: holistic, innovative, flexible risk assessment modelling 0.3 38
approach:. EFSA Supporting Publications, 2020, 17, 1757E.
Reduced toxicity of 3-epi-deoxynivalenol and de-epoxy-deoxynivalenol through deoxynivalenol
bacterial biotransformation: In vivo analysis in piglets. Food and Chemical Toxicology, 2020, 140,
1.8
26 111241.

$$
\begin{aligned}
& \text { Dietary exposure to mycotoxins in the French infant total diet study. Food and Chemical Toxicology, } \\
& 2020,140,111301 .
\end{aligned}
$$

$1.8 \quad 28$

30 In vitro and in vivo effects of a mycotoxin, deoxynivalenol, and a trace metal, cadmium, alone or in a mixture on the intestinal barrier. Environment International, 2019, 132, 105082.
4.8

53
\square
31 Combined hazard assessment of mycotoxins and their modified forms applying relative potency
factors: Zearalenone and T2/HT2 toxin. Food and Chemical Toxicology, 2019, 131, 110599.

Fumonisins at Doses below EU Regulatory Limits Induce Histological Alterations in Piglets. Toxins, 2019, 11, 548.
1.5

30

Combination of Isotope Labeling and Molecular Networking of Tandem Mass Spectrometry Data To
33 Reveal 69 Unknown Metabolites Produced by <i>Penicillium nordicum </i>. Analytical Chemistry, 2019,
$3.2 \quad 16$
91, 12191-12202.

Individual and combined mycotoxins deoxynivalenol, nivalenol, and fusarenon- X induced apoptosis in
lymphoid tissues of mice after oral exposure. Toxicon, 2019, 165, 83-94.

$$
\begin{aligned}
& \text { Morphologic, molecular and metabolic characterization of Aspergillus section Flavi in spices } \\
& \text { marketed in Lebanon. Scientific Reports, } 2019,9,5263 .
\end{aligned}
$$

$$
1.6
$$

A review on combined effects of moniliformin and co-occurring Fusarium toxins in farm animals.
World Mycotoxin Journal, 2019, 12, 281-291.

$40 \quad$| Unusual acute neonatal mortality and sow agalactia linked with ergot alkaloid contamination of |
| :--- |
| feed. Porcine Health Management, 2019,5,24. |

Co-Occurrence of DON and Emerging Mycotoxins in Worldwide Finished Pig Feed and Their Combined
Toxicity in Intestinal Cells. Toxins, 2019,11, 727 .
$42 \quad$ The protective role of liver X receptor (LXR) during fumonisin B1-induced hepatotoxicity. Archives of
Toxicology, 2019, 93, 505-517.

43	Beneficial effects of Saccharomyces cerevisiae RCO16 in weaned piglets: in vivo and ex vivo analysis. Beneficial Microbes, 2019, 10, 33-42.	1.0	18
44	Impact of <i>veA</i> on the development, aggressiveness, dissemination and secondary metabolism of <i>Penicillium expansum</i>. Molecular Plant Pathology, 2018, 19, 1971-1983.	2.0	40
45	Risks to human and animal health related to the presence of moniliformin in food and feed. EFSA Journal, 2018, 16, e05082.	0.9	22
46	Effect on public health of a possible increase of the maximum level for $\hat{a} €^{\sim}$ aflatoxin totalâ $€^{T M}$ from 4 to $10 \hat{A ̂} 1 / 4 \mathrm{~g} / \mathrm{kg}$ in peanuts and processed products thereof, intended for direct human consumption or use as an ingredient in foodstuffs. EFSA Journal, 2018, 16, e05175.	0.9	21
47	Genotoxicity of aflatoxins and their precursors in human cells. Toxicology Letters, 2018, 287, 100-107.	0.4	86
48	From genomics to metabolomics, moving toward an integrated strategy for the discovery of fungal secondary metabolites. Natural Product Reports, 2018, 35, 147-173.	5.2	132
49	Update of the risk assessment on 3 â $€$ monochloropropane diol and its fatty acid esters. EFSA Journal, 2018, 16, e05083.	0.9	64

The importance of accounting for sex in the search of proteomic signatures of mycotoxin exposure.
Journal of Proteomics, 2018, 178, 114-122.

Secondary metabolism in <i>Penicillium expansum</i>: Emphasis on recent advances in patulin
research. Critical Reviews in Food Science and Nutrition, 2018, 58, 2082-2098.
55
56

Porcine Small and Large Intestinal Microbiota Rapidly Hydrolyze the Masked Mycotoxin
55 Deoxynivalenol-3-Clucoside and Release Deoxynivalenol in Spiked Batch Cultures <i>ln Vitro</i>.
1.4

30
Applied and Environmental Microbiology, 2018, 84, .
56 Risk to human health related to the presence of perfluorooctane sulfonic acid and
0.9 perfluorooctanoic acid in food. EFSA Journal, 2018, 16, e05194.

171

57 Risk to human and animal health related to the presence of 4,15â€diacetoxyscirpenol in food and feed.
$0.9 \quad 16$
EFSA Journal, 2018, 16, e05367.

Update of the Scientific Opinion on opium alkaloids in poppy seeds. EFSA Journal, 2018, 16, e05243.
0.9

31
Risk for animal and human health related to the presence of dioxins and dioxinâ€like PCBs in feed and
food. EFSA Journal, 2018, 16, e05333.
60 Appropriateness to set a group healthâ€based guidance value for fumonisins and their modified forms.

EFSA Journal, 2018, 16, e05172.
0.9

45
Occurrence and Identification of Aspergillus Section Flavi in the Context of the Emergence of
Aflatoxins in French Maize. Toxins, 2018, 10, 525 .

62 Review article: Role of satiety hormones in anorexia induction by Trichothecene mycotoxins. Food
-

63 Overview and Comparison of Intestinal Organotypic Models, Intestinal Cells, and Intestinal Explan \begin{tabular}{l}
Used for Toxicity Studies. Current Topics in Microbiology and Immunology, 2018, 430, 247-264.

64 | Update: methodological principles and scientific methods to be taken into account when establish |
| :--- |
| Reference Points for Action (RPAs) for nonấfallowed pharmacologically active substances present in |
| food of animal origin. EFSA Journal, 2018, 16, e05332. |

65 Deepoxy-deoxynivalenol retains some immune-modulatory properties of the parent molecule

deoxynivalenol in piglets. Archives of Toxicology, 2018, 92, 3381-3389.
\end{tabular}

$$
\begin{aligned}
& 73 \text { Appropriateness to set a group health based guidance value for } \mathrm{T} 2 \text { and HT2 toxin and its modified } \\
& \text { forms. EFSA Journal, 2017, 15, e04655. }
\end{aligned}
$$

Risks for public health related to the presence of tetrodotoxin (TTX) and TTX analogues in marine
bivalves and gastropods. EFSA Journal, 2017, 15, e04752.

$76 \quad$| Co-exposure to low doses of the food contaminants deoxynivalenol and nivalenol has a synergistic |
| :--- |
| inflammatory effect on intestinal explants. Archives of Toxicology, 2017, 91, 2677-2687. |

Evidencing 98 secondary metabolites of Penicillium verrucosum using substrate isotopic labeling and
78 high-resolution mass spectrometry. Journal of Chromatography B: Analytical Technologies in theBiomedical and Life Sciences, 2017, 1071, 29-43.
Impact of feed restriction and housing hygiene conditions on specific and inflammatory immune
response, the cecal bacterial community and the survival of young rabbits. Animal, 2017, 11, 854-863.

> Patulin transformation products and last intermediates in its biosynthetic pathway, E- and Z-ascladiol, are not toxic to human cells. Archives of Toxicology, 2017, 91, 2455-2467.

81	Assessment of a decontamination process for hydrocyanic acid in linseed intended for use in animal feed. EFSA Journal, 2017, 15, e05004.	0.9	0
82	Scientific opinion on the evaluation of substances as acceptable previous cargoes for edible fats and oils. EFSA Journal, 2017, 15, e04656.	0.9	12
83	Piperine inhibits aflatoxin B1 production in Aspergillus flavus by modulating fungal oxidative stress response. Fungal Genetics and Biology, 2017, 107, 77-85.	0.9	74
84	Risks for animal health related to the presence of zearalenone and its modified forms in feed. EFSA Journal, 2017, 15, e04851.	0.9	115
85	Identification of Signaling Pathways Targeted by the Food Contaminant FB1: Transcriptome and Kino Analysis of Samples from Pig Liver and Intestine. Molecular Nutrition and Food Research, 2017, 61, 1700433.	1.5	32

86 Intestinal toxicity of the type B trichothecene mycotoxin fusarenon-X: whole transcriptome profiling reveals new signaling pathways. Scientific Reports, 2017, 7, 7530.
1.6

31

> 87 Determination of fumonisin B1 levels in body fluids and hair from piglets fed fumonisin B1-contaminated diets. Food and Chemical Toxicology, 2017, 108, 1-9.
1.8

25

Risks for human health related to the presence of pyrrolizidine alkaloids in honey, tea, herbal infusions and food supplements. EFSA Journal, 2017, 15, e04908.

Risks for public health related to the presence of furan and methylfurans in food. EFSA Journal, 2017,
15, e05005.

Assessment of a decontamination process for dioxins and dioxinâ€ $\neq i k e$ PCBs in fish oil by physical filtration with activated carbon. EFSA Journal, 2017, 15, e04961.
$0.9 \quad 2$

$$
99 \text { Risks to human and animal health related to the presence of deoxynivalenol and its acetylated and }
$$

99 modified forms in food and feed. EFSA Journal, 2017, 15, e04718.
0.9

109	A study on the physicochemical parameters for <i> <scp>P</scp> enicillium expansum</i> growth and patulin production: effect of temperature, pH , and water activity. Food Science and Nutrition, 2016, 4, 611-622.	1.5	60
110	Impact of food processing and detoxification treatments on mycotoxin contamination. Mycotoxin Research, 2016, 32, 179-205.	1.3	462
111	Microbial biotransformation of DON: molecular basis for reduced toxicity. Scientific Reports, 2016, 6, 29105.	1.6	128
112	Appropriateness to set a group healthâ€based guidance value for zearalenone and its modified forms. EFSA Journal, 2016, 14, e04425.	0.9	69
113	Impact of two mycotoxins deoxynivalenol and fumonisin on pig intestinal health. Porcine Health Management, 2016, 2, 21.	0.9	103
114	The mycotoxins deoxynivalenol and nivalenol show inÂvivo synergism on jejunum enterocytes apoptosis. Food and Chemical Toxicology, 2016, 87, 45-54.	1.8	30
115	Impact of mycotoxin on immune response and consequences for pig health. Animal Nutrition, 2016, 2, 63-68.	2.1	122
116	Intestinal toxicity of the masked mycotoxin deoxynivalenol-3-12-d-glucoside. Archives of Toxicology, 2016, 90, 2037-2046.	1.9	95
117	An LPS based method to stimulate the inflammatory response in growing rabbits. World Rabbit Science, 2016, 24, 55.	0.1	2
118	Risks for human and animal health related to the presence of phorbol esters in Jatropha kernel meal. EFSA Journal, 2015, 13, 4321.	0.9	8
119	Deoxynivalenol inhibits the expression by goblet cells of intestinal mucins through a PKR and MAP kinase dependent repression of the resistinâ€like molecule \hat{I}^{2}. Molecular Nutrition and Food Research, 2015, 59, 1076-1087.	1.5	88
120	Nivalenol Has a Greater Impact than Deoxynivalenol on Pig Jejunum Mucosa in Vitro on Explants and in Vivo on Intestinal Loops. Toxins, 2015, 7, 1945-1961.	1.5	53
121	Ganho de peso, consumo de raÃ§Ã£o e histologia de Ã3rgÃ£os de leitÃues alimentados com raÃ§Ãues baixos nÃveis de fumonisina B1. Pesquisa Veterinaria Brasileira, 2015, 35, 451-455.	0.5	3

The Food-Associated Ribotoxin Deoxynivalenol Modulates Inducible NO Synthase in Human Intestinal Cell Model. Toxicological Sciences, 2015, 145, 372-382.

Toxicological interactions between the mycotoxins deoxynivalenol, nivalenol and their acetylated derivatives in intestinal epithelial cells. Archives of Toxicology, 2015, 89, 1337-1346.
1.9

119

Occurrence of mycotoxins in cassava (Manihot esculenta Crantz) and its products. International Journal of Food Safety, Nutrition and Public Health, 2015, 5, 217.
$0.1 \quad 4$
Journal of Food Safety, Nutrition and Public Health, 2015, 5, 217.
4

Deoxynivalenol alone or in combination with nivalenol and zearalenone induce systemic histological changes in pigs. Experimental and Toxicologic Pathology, 2015, 67, 89-98.
127

Genome-wide immunity studies in the rabbit: transcriptome variations in peripheral blood
1.2

21
mononuclear cells after in vitro stimulation by LPS or PMA-lonomycin. BMC Genomics, 2015, 16, 26.

Development of a real-time PCR assay for Penicillium expansum quantification and patulin estimation
128 in apples. Food Microbiology, 2015, 50, 28-37.
2.1

36

Quantitative Feed Restriction Rather Than Caloric Restriction Modulates the Immune Response of Growing Rabbits. Journal of Nutrition, 2015, 145, 483-489.
1.3

New insights into the organ-specific adverse effects of fumonisin B1: comparison between lung and liver. Archives of Toxicology, 2015, 89, 1619-1629.
1.9

47
Mycoplasma vaccination responses in immunodepressed weanling pigs supplemented with S. cerevsing

boulardii. Animal Production Science, 2015, 55, 1528. (| Extensive Expression Differences along Porcine Small Intestine Evidenced by Transcriptome |
| :--- |
| Sequencing. PLoS ONE, 2014, 9, e88515. |

Effect of Deoxynivalenol and Other Type B Trichothecenes on the Intestine: A Review. Toxins, 2014, 6, 1615-1643.
1.5

257
136
137 Analysis of the contrast between natural occurrence of toxigenic AspergilliÂof the Flavi section and
aflatoxin B1 in cassava. Food Microbiology, 2014, 38, 151-159.
aflatoxin B1 in cassava. Food Microbiology, 2014, 38, 151-159.
Sequencing, physical organization and kinetic expression of the patulin biosynthetic gene cluster
138 from Penicillium expansum. International Journal of Food Microbiology, 2014, 189, 51-60.
2.1

88

139 The gene PatG involved in the biosynthesis pathway of patulin, a food-borne mycotoxin, encodes a
6-methylsalicylic acid decarboxylase. International Journal of Food Microbiology, 2014, 171, 77-83.

Biotransformation Approaches To Alleviate the Effects Induced by Fusarium Mycotoxins in Swine.
$140 \begin{aligned} & \text { Biotransformation Approaches To Alleviate the Effects Induced by } \\ & \text { Journal of Agricultural and Food Chemistry, 2013, 61, 6711-6719. }\end{aligned}$
2.4

53

The emerging mycotoxin, enniatin B1, down-modulates the gastrointestinal toxicity of T-2 toxin in
141 vitro on intestinal epithelial cells and ex vivo on intestinal explants. Archives of Toxicology, 2013, 87,
1.9

38
2233-2241.
The food contaminant deoxynivalenol activates the mitogen activated protein kinases in the intestine:
Interest of exÂvivo models as an alternative to inÂvivo experiments. Toxicon, 2013, 66, 31-36.

The peripheral blood transcriptome reflects variations in immunity traits in swine: towards the
Distribution and toxigenicity of Aspergillus section Flavi in spices marketed inÂMorocco. Food
Control, 2013, 32, 143-148.

147	New insights into mycotoxin mixtures: The toxicity of low doses of Type B trichothecenes on intestinal epithelial cells is synergistic. Toxicology and Applied Pharmacology, 2013, 272, 191-198.	1.3	174
148	New Untargeted Metabolic Profiling Combining Mass Spectrometry and Isotopic Labeling: Application on Aspergillus fumigatus Grown on Wheat. Analytical Chemistry, 2013, 85, 8412-8420.	3.2	28
149	Effect of Low Dose of Fumonisins on Pig Health: Immune Status, Intestinal Microbiota and Sensitivity to Salmonella. Toxins, 2013, 5, 841-864.	1.5	57
150	Validation study on urinary biomarkers of exposure for aflatoxin B1, ochratoxin A, fumonisin B1, deoxynivalenol and zearalenone in piglets. World Mycotoxin Journal, 2013, 6, 299-308.	0.8	61
151	Deoxynivalenol as a New Factor in the Persistence of Intestinal Inflammatory Diseases: An Emerging Hypothesis through Possible Modulation of Th17-Mediated Response. PLoS ONE, 2013, 8, e53647.	1.1	91
152	Current Situation of Mycotoxin Contamination and Co-occurrence in Animal Feedâ€"Focus on Europe. Toxins, 2012, 4, 788-809.	1.5	499
153	Toxicity of Deoxynivalenol and Its Acetylated Derivatives on the Intestine: Differential Effects on Morphology, Barrier Function, Tight Junction Proteins, and Mitogen-Activated Protein Kinases. Toxicological Sciences, 2012, 130, 180-190.	1.4	208

154 Deoxynivalenol Exposure. , 2012, 2012, 1-5.
155 The fungal T-2 toxin alters the activation of primary macrophages induced by TLR-agonists resulting in a decrease of the inflammatory response in the pig. Veterinary Research, 2012, 43, 35.
1.1 34
Chronic ingestion of deoxynivalenol and fumonisin, alone or in interaction, induces morphological 1.2 220
156 and immunological changes in the intestine of piglets. British Journal of Nutrition, 2012, 107, 1776-1786.Trypacidin, a Spore-Borne Toxin from Aspergillus fumigatus, Is Cytotoxic to Lung Cells. PLoS ONE, 2012,1.1787, e29906.Phytic acid protects porcine intestinal epithelial cells from deoxynivalenol (DON) cytotoxicity.

Structural and functional development of small intestine in intrauterine growth retarded porcine
163
The immunohistochemical localization of the glycosphingolipid asialo-GM1 in the intestine of weaned

165 Deciphering the genetic control of innate and adaptive immune responses in pig: a combined genetic
Transcriptome analysis of porcine PBMCs after in vitro stimulation by LPS or PMA/ionomycin using an
expression array targeting the pig immune response. BMC Genomics, 2010, 11,292 .
Deoxynivalenol Impairs Porcine Intestinal Barrier Function and Decreases the Protein Expression of
169 Claudin-4 through a Mitogen-Activated Protein Kinase-Dependent Mechanism ,. Journal of Nutrition, 1.3 199 2010, 140, 1956-1962.
170 Consumption of fumonisin B1 for 9 days induces stress proteins along the gastrointestinal tract ofpigs. Toxicon, 2010, 55, 244-249.
$0.8 \quad 20$
171 Comparative aspects of <i>in vitro</i>proliferation of human and porcine lymphocytes exposed to0.946
mycotoxins. Archives of Animal Nutrition, 2010, 64, 383-393.172 Veterinary Advances, 2010, 9, 1301-1310.
0.1 16
Experimental Trial of the Effect of Fumonisin B1 and the PRRS Virus in Swine. Journal of Animal and
98
Impact of Deoxynivalenol on the Intestinal Microflora of Pigs. International Journal of Molecular
173 Sciences, 2009, 10, 1-17. .8 .8
Intestinal Physiology and Peptidase Activity in Male Pigs Are Modulated by Consumption of Corn Culture Extracts Containing Fumonisins. Journal of Nutrition, 2009, 139, 1303-1307.1.324Molecular cloning and functional characterization of two CYP619 cytochrome P450s involved in175 Miosynthesis of patulin in Aspergillus clavatus. Microbiology (United Kingdom), 2009, 155, 1738-1747.The food contaminant deoxynivalenol, decreases intestinal barrier permeability and reduces claudin1.3280expression. Toxicology and Applied Pharmacology, 2009, 237, 41-48.Nuclear architecture of resting and LPS-stimulated porcine neutrophils by 3D FISH. Chromosome1.014Research, 2009, 17, 847-862.

Influence of administration route on the biotransformation of amoxicillin in the pig. Journal of Veterinary Pharmacology and Therapeutics, 2009, 32, 241-248.
181 Comparative effects of a prenatal stress occurring during early or late gestation on pig immune
Natural alternatives to in-feed antibiotics in pig production: can immunomodulators play a role?
Animal, 2009,3, 1644-1661.
184 Dietary glucomannan improves the vaccinal response in pigs exposed to aflatoxin B1 or T-2 toxin.
185
Review of mycotoxinâ€detoxifying agents used as feed additives: mode of action, efficacy and feed/food
0.399 safety. EFSA Supporting Publications, 2009, 6, .
The food contaminant fumonisin B1reduces the maturation of porcine CD11R1+intestinal antigen
186 presenting cells and antigen-specific immune responses, leading to a prolonged intestinal ETEC
1.1 infection. Veterinary Research, 2009, 40, 40.
Subclinical doses of T-2 toxin impair acquired immune response and liver cytochrome P450 in pigs.
187 Toxicology, 2008, 247, 46-54. loxicology, 2008, 247, 46-54.
$2.0 \quad 72$
188 Intraperitoneal infection with <i>Salmonella abortusovis</i> is partially controlled by a gene closely linked with the <i>lty</i> gene. Clinical and Experimental Immunology, 2008, 87, 373-378.
189 Immunotoxicity of aflatoxin B1: Impairment of the cell-mediated response to vaccine antigen and modulation of cytokine expression. Toxicology and Applied Pharmacology, 2008, 231, 142-149.
1.3
190 Ingestion of deoxynivalenol (DON) contaminated feed alters the pig vaccinal immune responses. Toxicology Letters, 2008, 177, 215-222.
0.4

216

125

191 La rÃ@alitÃ@ des mycotoxines. Sciences Des Aliments, 2008, 28, 257-264.

0.2

0

192 Selective impairment of drug-metabolizing enzymes in pig liver during subchronic dietary exposure to
1.8

45 aflatoxin B1. Food and Chemical Toxicology, 2007, 45, 2145-2154.

Effects of added fermentable carbohydrates in the diet on intestinal proinflammatory
cytokine-specific mRNA content in weaning piglets1. Journal of Animal Science, 2007, 85, 673-683.
0.2

40

The intestine as a possible target for fumonisin toxicity. Molecular Nutrition and Food Research, 2007, 51, 925-931.
1.5

112

195 Fumonisin B1 alters cell cycle progression and interleukinâ€2 synthesis in swine peripheral blood
1.5

29 mononuclear cells. Molecular Nutrition and Food Research, 2007, 51, 1406-1412.

Swine infection with Trichinella spiralis: Comparative analysis of the mucosal intestinal and systemic
0.7

25 immune responses. Veterinary Parasitology, 2007, 143, 122-130. expression in the veal calf. Toxicology, 2007, 242, 39-51.

199	The inability of Byssochlamys fulva to produce patulin is related to absence of 6-methylsalicylic acid synthase and isoepoxydon dehydrogenase genes. International Journal of Food Microbiology, 2007, 115, 131-139.	2.1	43
200	Cytokine mRNA profiles in pigs exposed prenatally and postnatally toSchistosoma japonicum. Veterinary Research, 2007, 38, 25-36.	1.1	13
201	Effect of subacute oral doses of nivalenol on immune and metabolic defence systems in mice. Veterinary Research, 2007, 38, 635-646.	1.1	13
202	Effect of various doses of deoxynivalenol on liver xenobiotic metabolizing enzymes in mice. Food and Chemical Toxicology, 2006, 44, 476-483.	1.8	36
203	Mycotoxin fumonisin B1 selectively down-regulates the basal IL-8 expression in pig intestine: in vivo and in vitro studies. Food and Chemical Toxicology, 2006, 44, 1768-1773.	1.8	73
204	Ingestion of low doses of deoxynivalenol does not affect hematological, biochemical, or immune responses of piglets1. Journal of Animal Science, 2006, 84, 1935-1942.	0.2	74
205	Sex-related differences in the immune response of weanling piglets exposed to low doses of fumonisin extract. British Journal of Nutrition, 2006, 95, 1185-1192.	1.2	55
206	Role of intestinal epithelial cells in the innate immune defence of the pig intestine. Veterinary Research, 2006, 37, 359-368.	1.1	123
207	Oral exposure to culture material extract containing fumonisins predisposes swine to the development of pneumonitis caused by Pasteurella multocida. Toxicology, 2005, 213, 34-44.	2.0	66

217 Development of a Macroarray To Specifically Analyze Immunological Gene Expression in Swine.Vaccine Journal, 2004, 11, 691-698.Weaning Is Associated with an Upregulation of Expression of Inflammatory Cytokines in the Intestine
intensity of lesions. Veterinary Research, 2004, 35, 309-324.
227 Cloning, chromosomal location, and tissue expression of the gene for pig interleukin-18. Immunogenetics, 2000, 51, 358-365.$1.2 \quad 15$Inhibitory activity of anti-interleukin-4 and anti-interleukin-10 antibodies on Toxoplasma gondii228 proliferation in mouse peritoneal macrophages cocultured with splenocytes from infected mice.0.614Parasitology Research, 2000, 86, 151-157.
Lack of a Role of Cytotoxic Necrotizing Factor 1 Toxin from Escherichia coli in Bacterial
229 Pathogenicity and Host Cytokine Response in Infected Germfree Piglets. Infection and Immunity, 2000, 1.0 48 68, 839-847.Changing reactivity of caprine and ovine mononuclear phagocytes throughout part of the life cycle230 of Oestrus ovis: assessment through spontaneous and inductible NO production. Veterinary1.15Research, 1999, 30, 371-6.

Failure of P strain mice to respond to vaccination against schistosomiasis correlates with impaired pertonealmacrophages. Infectionand Immunity, 1997, 65, 1364-1369.
237 Nitrogen Oxide in Host Defense against Parasites. Methods, 1996, 10, 8-14.

244 NO as an affector molecule of parasite killing: modulation of its synthesis by cytokines. Comparative Biochemistry and Physiology C, Comparative Pharmacology and Toxicology, 1994, 108, 11-18.
245 Elevated expression of Thl cytokines and nitric oxide synthase in the lungs of vaccinated mice after 245 challenge infection with Schistosoma mansoni. Journal of Immunology, 1994, 153, 5200-9.IL-12 inhibits Th2 cytokine responses induced by eggs of Schistosoma mansoni. Journal of Immunology,3982-9.
Interleukin 10 inhibits macrophage microbicidal activity by blocking the endogenous production of
249 tumor necrosis factor alpha required as a costimulatory factor for interferon gamma-induced 3.3 338
activation.. Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 8676-8680
Low response of BALB/c macrophages to priming and activating signals. Journal of Leukocyte Biology,

IL-10 synergizes with IL-4 and transforming growth factor-beta to inhibit macrophage cytotoxic activity. Journal of Immunology, 1992, 148, 3578-82.

Experimental ovine salmonellosis (Salmonella Abortusovis): Pathogenesis and vaccination. Research

[^0]: Source: https://exaly.com/author-pdf/2355306/publications.pdf
 Version: 2024-02-01

