J Alejandro A Rojas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/235507/publications.pdf

Version: 2024-02-01

687363 552781 30 705 13 26 citations g-index h-index papers 30 30 30 812 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	First Report of Halo Blight of Hop (<i>Humulus lupulus</i>) Caused by <i>Diaporthe humulicola</i>) in Quebec, Canada. Plant Disease, 2022, 106, 1750.	1.4	2
2	Ecology and diversity of culturable fungal species associated with soybean seedling diseases in the Midwestern United States. Journal of Applied Microbiology, 2022, 132, 3797-3811.	3.1	3
3	Phylogenetic conservatism of mycoparasitism and its contribution to pathogen antagonism. Molecular Ecology, 2022, 31, 3018-3030.	3.9	7
4	Co-invading ectomycorrhizal fungal succession in pine-invaded mountain grasslands. Fungal Ecology, 2022, 60, 101176.	1.6	3
5	Ectomycorrhizal Plant-Fungal Co-invasions as Natural Experiments for Connecting Plant and Fungal Traits to Their Ecosystem Consequences. Frontiers in Forests and Global Change, 2020, 3, .	2.3	20
6	Harnessing <i>Pseudomonas protegens</i> to Control Bacterial Panicle Blight of Rice. Phytopathology, 2020, 110, 1657-1667.	2.2	8
7	Draft Genome Sequence Resource for Blumeriella jaapii, the Cherry Leaf Spot Pathogen. Phytopathology, 2020, 110, 1507-1510.	2.2	1
8	Diversity and Characterization of Oomycetes Associated with Corn Seedlings in Michigan. Phytobiomes Journal, 2019, 3, 224-234.	2.7	26
9	Fungal Endophytes of <i> Populus trichocarpa < /i > Alter Host Phenotype, Gene Expression, and Rhizobiome Composition. Molecular Plant-Microbe Interactions, 2019, 32, 853-864.</i>	2.6	52
10	A High-Throughput Microtiter-Based Fungicide Sensitivity Assay for Oomycetes Using ⟨i>Z⟨ i>′-Factor Statistic. Phytopathology, 2019, 109, 1628-1637.	2.2	9
11	Population Structure of Pythium ultimum from Greenhouse Floral Crops in Michigan. Plant Disease, 2019, 103, 859-867.	1.4	3
12	Oomycete Species Associated with Soybean Seedlings in North Americaâ€"Part II: Diversity and Ecology in Relation to Environmental and Edaphic Factors. Phytopathology, 2017, 107, 293-304.	2.2	83
13	Development and Application of qPCR and RPA Genus- and Species-Specific Detection of <i>Phytophthora sojae</i> and <i>P. sansomeana</i> Root Rot Pathogens of Soybean. Plant Disease, 2017, 101, 1171-1181.	1.4	51
14	Pathogenicity and Virulence of Soilborne Oomycetes on Phaseolus vulgaris. Plant Disease, 2017, 101, 1851-1859.	1.4	13
15	Oomycete Species Associated with Soybean Seedlings in North America—Part I: Identification and Pathogenicity Characterization. Phytopathology, 2017, 107, 280-292.	2.2	99
16	Phenotypic and genotypic variation in Michigan populations of <i>Phytophthora infestans</i> from 2008 to 2010. Plant Pathology, 2016, 65, 1022-1033.	2.4	3
17	Tuber Blight Development in Potato Cultivars in Response to Different Genotypes of <i><scp>P</scp>hytophthora infestans</i> Journal of Phytopathology, 2014, 162, 33-42.	1.0	6
18	Physiological and molecular characterization of Phytophthora infestans isolates from the Central Colombian Andean Region. Revista Iberoamericana De Micologia, 2013, 30, 81-87.	0.9	11

#	Article	IF	CITATIONS
19	<scp>TALE $<$ scp> 1 from $<$ i> $<$ scp> $X<$ scp>anthomonas axonopodis $<$ li> $<$ pv. $<$ i> $<$ manihotis $<$ li> $<$ acts as a transcriptional activator in plant cells and is important for pathogenicity in cassava plants. Molecular Plant Pathology, 2013, 14, 84-95.	4.2	37
20	$\langle i \rangle$ Fusarium $\langle i \rangle$ spp. Causing Dry Rot of Seed Potato Tubers in Michigan and Their Sensitivity to Fungicides. Plant Disease, 2012, 96, 1767-1774.	1.4	66
21	Genetic diversity of Phytophthora infestans in the Northern Andean region. BMC Genetics, 2011, 12, 23.	2.7	58
22	First Report of <i>Fusarium torulosum </i> Causing Dry Rot of Seed Potato Tubers in the United States. Plant Disease, 2011, 95, 1194-1194.	1.4	8
23	First Report of Pythium sterilum Causing Root Rot of Blueberry in the United States. Plant Disease, 2011, 95, 614-614.	1.4	1
24	First Report of in vitro Fludioxonil-Resistant Isolates of <i>Fusarium</i> spp. Causing Potato Dry Rot in Michigan. Plant Disease, 2011, 95, 228-228.	1.4	16
25	Effect of Different Genotypes of Phytophthora infestans (Mont. de Bary) and Temperature on Tuber Disease Development. American Journal of Potato Research, 2010, 87, 509-520.	0.9	5
26	Discovery of Phytophthora infestans Genes Expressed in Planta through Mining of cDNA Libraries. PLoS ONE, 2010, 5, e9847.	2.5	8
27	<i>Fusarium</i> species detected in onychomycosis in Colombia. Mycoses, 2009, 52, 350-356.	4.0	29
28	Isoenzyme characterization of proteases and amylases and partial purification of proteases from filamentous fungi causing biodeterioration of industrial paper. International Biodeterioration and Biodegradation, 2009, 63, 169-175.	3.9	21
29	Characterization of Phytophthora infestans Populations in Colombia: First Report of the A2 Mating Type. Phytopathology, 2009, 99, 82-88.	2.2	56
30	Genome Sequence Resource of Burkholderia glumae UAPB13. PhytoFrontiers, 0, , .	1.6	0