List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2354990/publications.pdf Version: 2024-02-01



ΙΠΑΝ ΜΑΤΟς

| #  | Article                                                                                                                                                                                                   | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Synergy effect in the photocatalytic degradation of phenol on a suspended mixture of titania and activated carbon. Applied Catalysis B: Environmental, 1998, 18, 281-291.                                 | 10.8 | 468       |
| 2  | Effect of the Type of Activated Carbons on the Photocatalytic Degradation of Aqueous Organic<br>Pollutants by UV-Irradiated Titania. Journal of Catalysis, 2001, 200, 10-20.                              | 3.1  | 309       |
| 3  | Zirconium–Carbon Hybrid Sorbent for Removal of Fluoride from Water: Oxalic Acid Mediated Zr(IV)<br>Assembly and Adsorption Mechanism. Environmental Science & Technology, 2014, 48, 1166-1174.            | 4.6  | 186       |
| 4  | Solar photocatalytic degradation of 4-chlorophenol using the synergistic effect between titania and activated carbon in aqueous suspension. Catalysis Today, 1999, 54, 255-265.                           | 2.2  | 177       |
| 5  | Influence of activated carbon upon titania on aqueous photocatalytic consecutive runs of phenol photodegradation. Applied Catalysis B: Environmental, 2007, 70, 461-469.                                  | 10.8 | 141       |
| 6  | Solvothermal carbon-doped TiO2 photocatalyst for the enhanced methylene blue degradation under visible light. Applied Catalysis A: General, 2010, 390, 175-182.                                           | 2.2  | 108       |
| 7  | C-doped anatase TiO2: Adsorption kinetics and photocatalytic degradation of methylene blue and phenol, and correlations with DFT estimations. Journal of Colloid and Interface Science, 2019, 547, 14-29. | 5.0  | 87        |
| 8  | Photoactivity of S-doped nanoporous activated carbons: A new perspective for harvesting solar energy on carbon-based semiconductors. Applied Catalysis A: General, 2012, 445-446, 159-165.                | 2.2  | 85        |
| 9  | Surface nano-aggregation and photocatalytic activity of TiO2 on H-type activated carbons. Applied<br>Catalysis B: Environmental, 2007, 73, 227-235.                                                       | 10.8 | 84        |
| 10 | Selective phenol hydrogenation in aqueous phase on Pd-based catalysts supported on hybrid<br>TiO2-carbon materials. Applied Catalysis A: General, 2011, 404, 103-112.                                     | 2.2  | 83        |
| 11 | Eco-friendly TiO2–AC Photocatalyst for the Selective Photooxidation of 4-Chlorophenol. Catalysis<br>Letters, 2009, 130, 568-574.                                                                          | 1.4  | 71        |
| 12 | Development of TiO2-C photocatalysts for solar treatment of polluted water. Carbon, 2017, 122, 361-373.                                                                                                   | 5.4  | 68        |
| 13 | Influence of activated carbon in TiO2 and ZnO mediated photo-assisted degradation of 2-propanol in<br>gas–solid regime. Applied Catalysis B: Environmental, 2010, 99, 170-180.                            | 10.8 | 66        |
| 14 | Synthesis and characterization of activated carbon from sawdust of Algarroba wood. 1. Physical activation and pyrolysis. Journal of Hazardous Materials, 2011, 196, 360-369.                              | 6.5  | 61        |
| 15 | Influence of L-type activated carbons on photocatalytic activity of TiO2 in 4-chlorophenol<br>photodegradation. Journal of Photochemistry and Photobiology A: Chemistry, 2007, 191, 122-131.              | 2.0  | 58        |
| 16 | Nanostructured carbon materials for enhanced nitrobenzene adsorption: Physical vs. chemical surface properties. Carbon, 2018, 139, 833-844.                                                               | 5.4  | 55        |
| 17 | Synergy effect in the photocatalytic degradation of methylene blue on a suspended mixture of TiO2 and N-containing carbons. Carbon, 2013, 54, 460-471.                                                    | 5.4  | 48        |
| 18 | Environmental green chemistry applications of nanoporous carbons. Journal of Materials Science, 2010, 45, 4934-4944.                                                                                      | 1.7  | 47        |

| #  | Article                                                                                                                                                                                 | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Solar light-driven photocatalytic degradation of phenol on S-doped nanoporous carbons: The role of functional groups in governing activity and selectivity. Carbon, 2020, 156, 10-23.   | 5.4  | 46        |
| 20 | Activated carbon supported Ni–Ca: Influence of reaction parameters on activity and stability of catalyst on methane reformation. Fuel, 2007, 86, 1337-1344.                             | 3.4  | 45        |
| 21 | Performance of activated carbons in consecutive phenol photooxidation cycles. Carbon, 2014, 73, 206-215.                                                                                | 5.4  | 45        |
| 22 | Direct formic acid fuel cells on Pd catalysts supported on hybrid TiO2-C materials. Applied Catalysis B:<br>Environmental, 2015, 163, 167-178.                                          | 10.8 | 43        |
| 23 | Hybrid photoactive materials from municipal sewage sludge for the photocatalytic degradation of methylene blue. Green Chemistry, 2011, 13, 3431.                                        | 4.6  | 42        |
| 24 | Engaging nanoporous carbons in "beyond adsorption―applications: Characterization, challenges and performance. Carbon, 2020, 164, 69-84.                                                 | 5.4  | 41        |
| 25 | Microwave-assisted synthesis of C-doped TiO2 and ZnO hybrid nanostructured materials as quantum-dots sensitized solar cells. Applied Surface Science, 2018, 434, 744-755.               | 3.1  | 39        |
| 26 | Activated carbon supported Niî—,Mo: effects of pretreatment and composition on catalyst reducibility and on ethylene conversion. Applied Catalysis A: General, 1997, 152, 27-42.        | 2.2  | 38        |
| 27 | Hydrogen photoproduction under visible irradiation of Au–TiO2/activated carbon. Applied Catalysis A:<br>General, 2012, 417-418, 263-272.                                                | 2.2  | 35        |
| 28 | Nanocrystalline carbon–TiO2 hybrid hollow spheres as possible electrodes for solar cells. Carbon,<br>2013, 53, 169-181.                                                                 | 5.4  | 32        |
| 29 | High surface area microporous carbons as photoreactors for the catalytic photodegradation of<br>methylene blue under UV–vis irradiation. Applied Catalysis A: General, 2016, 517, 1-11. | 2.2  | 30        |
| 30 | Catalytic effect of KOH on textural changes of carbon macro-networks by physical activation. Journal of Molecular Catalysis A, 2005, 228, 189-194.                                      | 4.8  | 28        |
| 31 | Catalytic performance of ordered mesoporous carbons modified with lanthanides in dry methane reforming. Catalysis Today, 2018, 301, 204-216.                                            | 2.2  | 28        |
| 32 | Visible light driven photooxidation of phenol on TiO2/Cu-loaded carbon catalysts. Carbon, 2014, 76, 183-192.                                                                            | 5.4  | 27        |
| 33 | Influence of Surface Properties of Activated Carbon on Photocatalytic Activity of TiO2 in<br>4-chlorophenol Degradation. The Open Environmental Engineering Journal, 2009, 2, 21-29.    | 1.2  | 27        |
| 34 | Methane conversion on Pt–Ru nanoparticles alloy supported on hydrothermal carbon. Applied<br>Catalysis A: General, 2010, 386, 140-146.                                                  | 2.2  | 25        |
| 35 | Eco-Friendly Heterogeneous Photocatalysis on Biochar-Based Materials Under Solar Irradiation.<br>Topics in Catalysis, 2016, 59, 394-402.                                                | 1.3  | 24        |
| 36 | Ethylene conversion on activated carbon-supported NiMo catalysts: effect of the support. Applied<br>Catalysis A: General, 2003, 241, 25-38.                                             | 2.2  | 22        |

| #  | Article                                                                                                                                                                                                                                           | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Ti-containing mesoporous silica for methylene blue photodegradation. Applied Catalysis A: General, 2011, 393, 359-366.                                                                                                                            | 2.2  | 22        |
| 38 | Sunlight photoactivity of rice husks-derived biogenic silica. Catalysis Today, 2019, 328, 125-135.                                                                                                                                                | 2.2  | 21        |
| 39 | Upgrading of pine tannin biochars as electrochemical capacitor electrodes. Journal of Colloid and<br>Interface Science, 2021, 601, 863-876.                                                                                                       | 5.0  | 21        |
| 40 | Photodegradation of phenol red on a Ni-doped niobate/carbon composite. Ceramics International, 2014, 40, 9525-9534.                                                                                                                               | 2.3  | 20        |
| 41 | Sustainable production of nanoporous carbons: Kinetics and equilibrium studies in the removal of atrazine. Journal of Colloid and Interface Science, 2020, 562, 252-267.                                                                          | 5.0  | 20        |
| 42 | Photocatalytic Activity of TiO2 on Activated Carbon Under Visible Light in the Photodegradation of Phenol~!2009-10-20~!2009-10-27~!2010-01-27~!. Open Materials Science Journal, 2010, 4, 2-4.                                                    | 0.2  | 19        |
| 43 | Influence of activated carbon upon the photocatalytic degradation of methylene blue under UV–vis<br>irradiation. Environmental Science and Pollution Research, 2015, 22, 784-791.                                                                 | 2.7  | 18        |
| 44 | Nanostructured hybrid TiO2-C for the photocatalytic conversion of phenol. Solar Energy, 2016, 134, 64-71.                                                                                                                                         | 2.9  | 17        |
| 45 | Photochemical reactivity of apical oxygen in KSr2Nb5O15 materials for environmental remediation under UV irradiation. Journal of Colloid and Interface Science, 2017, 496, 211-221.                                                               | 5.0  | 17        |
| 46 | Nanostructured KxNa1-xNbO3 hollow spheres as potential materials for the photocatalytic treatment of polluted water. Applied Catalysis B: Environmental, 2021, 298, 120502.                                                                       | 10.8 | 16        |
| 47 | Photocatalytic activity of P-Fe/activated carbon nanocomposites under artificial solar irradiation.<br>Catalysis Today, 2020, 356, 226-240.                                                                                                       | 2.2  | 15        |
| 48 | Hybrid Material Based on an Amorphous-Carbon Matrix and ZnO/Zn for the Solar Photocatalytic Degradation of Basic Blue 41. Molecules, 2020, 25, 96.                                                                                                | 1.7  | 13        |
| 49 | Functional nanostructured catalysts based on the niobates to the dry methane reforming and ethylene homologation reactions. Fuel, 2013, 107, 503-510.                                                                                             | 3.4  | 11        |
| 50 | Design of Ag/ and Pt/TiO2-SiO2 nanomaterials for the photocatalytic degradation of phenol under solar irradiation. Environmental Science and Pollution Research, 2018, 25, 18894-18913.                                                           | 2.7  | 10        |
| 51 | Influence of phosphorous upon the formation of DMPO- OH and POBN-O2Â <sup>-</sup> spin-trapping adducts in<br>carbon-supported P-promoted Fe-based photocatalysts. Journal of Photochemistry and Photobiology<br>A: Chemistry, 2020, 391, 112362. | 2.0  | 10        |
| 52 | Influence of anatase and rutile phase in TiO2 upon the photocatalytic degradation of methylene blue<br>under solar irradiation in presence of activated carbon. Water Science and Technology, 2014, 69,<br>2184-2190.                             | 1.2  | 8         |
| 53 | TiO2/S-Doped Carbons Hybrids: Analysis of Their Interfacial and Surface Features. Molecules, 2019, 24,<br>3585.                                                                                                                                   | 1.7  | 8         |
| 54 | Photocatalytic Performance of Carbon-Containing CuMo-Based Catalysts under Sunlight<br>Illumination. Catalysts, 2022, 12, 46.                                                                                                                     | 1.6  | 8         |

| #  | Article                                                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | The Cramer's rule for the parametrization of phenol and its hydroxylated byproducts: UV<br>spectroscopy vs. high performance liquid chromatography. Environmental Science and Pollution<br>Research, 2021, 28, 6746-6757.                                  | 2.7 | 7         |
| 56 | Changes on Texture and Crystalline Phase of Activated Carbon-Supported Ni-Ca Catalyst During Dry<br>Methane Reforming. Open Materials Science Journal, 2010, 4, 125-132.                                                                                   | 0.2 | 7         |
| 57 | Performance of a C-containing Cu-based photocatalyst for the degradation of tartrazine: Comparison of performance in a slurry and CPC photoreactor under artificial and natural solar light. Journal of Colloid and Interface Science, 2022, 623, 646-659. | 5.0 | 7         |
| 58 | Combination of Adsorption on Activated Carbon and Oxidative Photocatalysis on TiO2 for Gaseous<br>Toluene Remediation~!2009-10-17~!2009-10-23~!2010-01-27~!. Open Materials Science Journal, 2010, 4, 23-25.                                               | 0.2 | 6         |
| 59 | Influence of H-Type and L-Type Activated Carbon in the Photodegradation of Methylene Blue and<br>Phenol under UV and Visible Light Irradiated TiO&Itsub>2&It/sub>. Modern Research in Catalysis,<br>2012, 01, 1-9.                                         | 1.2 | 2         |
| 60 | Texture Properties and Kinetic Parameters Associated to Carbon Materials Obtained from Sawdust of<br>Algarroba Wood. 1. Application in Phenol Photodetoxification. The Open Environmental Engineering<br>Journal, 2011, 4, 1-10.                           | 1.2 | 2         |
| 61 | Activated Carbon Supported Ni-Ca: Influence of Reaction Parameters on Activity and Stability of Catalyst on Methane Reformation. Studies in Surface Science and Catalysis, 2007, , 261-264.                                                                | 1.5 | 1         |
| 62 | (Invited) Biomass-Derivative Molecules for the Sustainable Synthesis of Carbon-Doped<br>High-Performance Nanostructured Materials. ECS Meeting Abstracts, 2019, , .                                                                                        | 0.0 | 0         |