
Richard H Stadler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2354856/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Acrylamide from Maillard reaction products. Nature, 2002, 419, 449-450.	27.8	1,416
2	A Review of Acrylamide: An Industry Perspective on Research, Analysis, Formation, and Control. Critical Reviews in Food Science and Nutrition, 2004, 44, 323-347.	10.3	358
3	In-Depth Mechanistic Study on the Formation of Acrylamide and Other Vinylogous Compounds by the Maillard Reaction. Journal of Agricultural and Food Chemistry, 2004, 52, 5550-5558.	5.2	258
4	Acrylamide in Foods: A Review of the Science and Future Considerations. Annual Review of Food Science and Technology, 2012, 3, 15-35.	9.9	176
5	Acrylamide Formation in Food: A Mechanistic Perspective. Journal of AOAC INTERNATIONAL, 2005, 88, 262-267.	1.5	139
6	Acrylamide: An Update on Current Knowledge in Analysis, Levels in Food, Mechanisms of Formation, and Potential Strategies of Control. Nutrition Reviews, 2004, 62, 449-467.	5.8	132
7	Improved Sample Preparation to Determine Acrylamide in Difficult Matrixes Such as Chocolate Powder, Cocoa, and Coffee by Liquid Chromatography Tandem Mass Spectroscopy. Journal of Agricultural and Food Chemistry, 2004, 52, 4625-4631.	5.2	123
8	Rapid determination of furan in heated foodstuffs by isotope dilution solid phase micro-extraction-gas chromatography – mass spectrometry (SPME-GC-MS). Analyst, The, 2005, 130, 878.	3.5	118
9	Analysis of acrylamide in food by isotope-dilution liquid chromatography coupled with electrospray ionization tandem mass spectrometry. Journal of Chromatography A, 2003, 1020, 121-130.	3.7	105
10	Acrylamide in coffee: Review of progress in analysis, formation and level reduction. Food Additives and Contaminants, 2007, 24, 60-70.	2.0	100
11	Formation of Vinylogous Compounds in Model Maillard Reaction Systems. Chemical Research in Toxicology, 2003, 16, 1242-1250.	3.3	90
12	Alkylpyridiniums. 1. Formation in Model Systems via Thermal Degradation of Trigonelline. Journal of Agricultural and Food Chemistry, 2002, 50, 1192-1199.	5.2	80
13	Alkylpyridiniums. 2. Isolation and Quantification in Roasted and Ground Coffees. Journal of Agricultural and Food Chemistry, 2002, 50, 1200-1206.	5.2	61
14	lssues surrounding consumer trust and acceptance of existing and emerging food processing technologies. Critical Reviews in Food Science and Nutrition, 2021, 61, 97-115.	10.3	60
15	Furan and Methylfurans in Foods: An Update on Occurrence, Mitigation, and Risk Assessment. Comprehensive Reviews in Food Science and Food Safety, 2019, 18, 738-752.	11.7	52
16	Impact of the roasting degree of coffee on the in vitro radical scavenging capacity and content of acrylamide. LWT - Food Science and Technology, 2007, 40, 1849-1854.	5.2	51
17	Quantitative analysis of clenbuterol in meat products using liquid chromatography–electrospray ionisation tandem mass spectrometry. Biomedical Applications, 1999, 736, 209-219.	1.7	47
18	Why chlorate occurs in potable water and processed foods: a critical assessment and challenges faced by the food industry. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2016, 33, 968-982.	2.3	46

RICHARD H STADLER

#	Article	IF	CITATIONS
19	Acrylamide: Update on Selected Research Activities Conducted by the European Food and Drink Industry. Journal of AOAC INTERNATIONAL, 2005, 88, 234-241.	1.5	44
20	Thermal degradation of 2-furoic acid and furfuryl alcohol as pathways in the formation of furan and 2-methylfuran in food. Food Chemistry, 2020, 303, 125406.	8.2	32
21	Acrylamide Formation in Different Foods and Potential Strategies for Reduction. , 2005, 561, 157-169.		28
22	Tandem mass spectrometric accurate mass performance of time-of-flight and Fourier transform ion cyclotron resonance mass spectrometry: a case study with pyridine derivatives. Rapid Communications in Mass Spectrometry, 2001, 15, 1840-1848.	1.5	26
23	Understanding the contamination of food with mineral oil: the need for a confirmatory analytical and procedural approach. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2017, 34, 1052-1071.	2.3	25
24	N,N-dimethylpiperidinium (mepiquat) Part 2. Formation in roasted coffee and barley during thermal processing. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2014, 31, 234-241.	2.3	23
25	Process-induced formation of imidazoles in selected foods. Food Chemistry, 2017, 228, 381-387.	8.2	20
26	Mineral oil hydrocarbons in foods: is the data reliable?. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2020, 37, 69-83.	2.3	19
27	N,N-dimethylpiperidinium (mepiquat): Part 1. Formation in model systems and relevance to roasted food products. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2014, 31, 226-233.	2.3	13
28	Mepiquat: A Process-Induced Byproduct in Roasted Cereal-Based Foodstuffs. Journal of Agricultural and Food Chemistry, 2016, 64, 1185-1190.	5.2	12
29	Role of choline and glycine betaine in the formation of N,N-dimethylpiperidinium (mepiquat) under Maillard reaction conditions. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2014, 31, 1949-1958.	2.3	11
30	Analysis of ethylene oxide in ice creams manufactured with contaminated carob bean gum (E410). Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2021, 38, 2116-2127.	2.3	11
31	Heat-induced formation of mepiquat by decarboxylation of pipecolic acid and its betaine derivative. Part 1: Model system studies. Food Chemistry, 2017, 227, 173-178.	8.2	9
32	Heat-induced formation of mepiquat by decarboxylation of pipecolic acid and its betaine derivative. Part 2: Natural formation in cooked vegetables and selected food products. Food Chemistry, 2017, 228, 99-105.	8.2	8
33	Heat-Generated Toxicants in Foods (Acrylamide, MCPD Esters, Glycidyl Esters, Furan, and Related) Tj ETQq1 1 0.	784314 rg	gBT_Overlock
34	Acrylamide Formation Mechanisms. , 2016, , 1-17.		3
35	Chapter 20 Acrylamide, Chloropropanols and Chloropropanol Esters, Furan. Comprehensive Analytical Chemistry, 2008, 51, 705-732.	1.3	2

37Food Process Contaminants. ACS Symposium Series, 2019, ,1-13.0.5138Furan and Alkylfurans: Occurrence and Risk Assessment. , 2019, ,532-542.139Food Processing and Nutritional Aspects. ,0, ,645-677.040An Update on Processing-Derived Food Contaminants: Acrylamide, Monochloropropane-1,2-Diol041Analysis of Halogenated Disinfection Byproducts in Water. , 2018, ,373-373.0	#	Article	IF	CITATIONS
39 Food Processing and Nutritional Aspects. , 0, , 645-677. 0 40 An Update on Processing-Derived Food Contaminants: Acrylamide, Monochloropropane-1,2-Diol (MCPD) Esters, and Glycidyl Esters. , 2016, , . 0	37	Food Process Contaminants. ACS Symposium Series, 2019, , 1-13.	0.5	1
An Update on Processing-Derived Food Contaminants: Acrylamide, Monochloropropane-1,2-Diol 0 (MCPD) Esters, and Glycidyl Esters. , 2016, , .	38	Furan and Alkylfurans: Occurrence and Risk Assessment. , 2019, , 532-542.		1
(MCPD) Esters, and Glycidyl Esters. , 2016, , .	39	Food Processing and Nutritional Aspects. , 0, , 645-677.		Ο
41 Analysis of Halogenated Disinfection Byproducts in Water. , 2018, , 373-373. 0	40	An Update on Processing-Derived Food Contaminants: Acrylamide, Monochloropropane-1,2-Diol (MCPD) Esters, and Glycidyl Esters. , 2016, , .		0
	41	Analysis of Halogenated Disinfection Byproducts in Water. , 2018, , 373-373.		0