## Manfred Ayasse

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2353602/publications.pdf Version: 2024-02-01



MANEDED AVASSE

| #  | Article                                                                                                                                                                                                                                                       | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Orchid pollination by sexual swindle. Nature, 1999, 399, 421-421.                                                                                                                                                                                             | 13.7 | 398       |
| 2  | Pollinator attraction in a sexually deceptive orchid by means of unconventional chemicals.<br>Proceedings of the Royal Society B: Biological Sciences, 2003, 270, 517-522.                                                                                    | 1.2  | 215       |
| 3  | EVOLUTION OF REPRODUCTIVE STRATEGIES IN THE SEXUALLY DECEPTIVE ORCHID OPHRYS SPHEGODES:<br>HOW DOES FLOWER-SPECIFIC VARIATION OF ODOR SIGNALS INFLUENCE REPRODUCTIVE SUCCESS?.<br>Evolution; International Journal of Organic Evolution, 2000, 54, 1995-2006. | 1.1  | 191       |
| 4  | Orchids Mimic Green-Leaf Volatiles to Attract Prey-Hunting Wasps for Pollination. Current Biology, 2008, 18, 740-744.                                                                                                                                         | 1.8  | 146       |
| 5  | Post-pollination emission of a repellent compound in a sexually deceptive orchid: a new mechanism for maximising reproductive success?. Oecologia, 2001, 126, 531-534.                                                                                        | 0.9  | 136       |
| 6  | Does she smell like a queen? Chemoreception of a cuticular hydrocarbon signal in the ant<br>Pachycondyla inversa. Journal of Experimental Biology, 2004, 207, 1085-1091.                                                                                      | 0.8  | 125       |
| 7  | Variation of Floral Scent Emission and Postpollination Changes in Individual Flowers of Ophrys sphegodes Subsp. sphegodes. Journal of Chemical Ecology, 1997, 23, 2881-2895.                                                                                  | 0.9  | 118       |
| 8  | Orchid Mimics Honey Bee Alarm Pheromone in Order to Attract Hornets for Pollination. Current Biology, 2009, 19, 1368-1372.                                                                                                                                    | 1.8  | 116       |
| 9  | Hostâ€plant finding and recognition by visual and olfactory floral cues in an oligolectic bee.<br>Functional Ecology, 2010, 24, 1234-1240.                                                                                                                    | 1.7  | 112       |
| 10 | Chemical ecology and pollinator-driven speciation in sexually deceptive orchids. Phytochemistry, 2011, 72, 1667-1677.                                                                                                                                         | 1.4  | 107       |
| 11 | Chemical Ecology of Bumble Bees. Annual Review of Entomology, 2014, 59, 299-319.                                                                                                                                                                              | 5.7  | 94        |
| 12 | Relations between forest management, stand structure and productivity across different types of<br>Central European forests. Basic and Applied Ecology, 2018, 32, 39-52.                                                                                      | 1.2  | 87        |
| 13 | Contrasting responses of above- and belowground diversity to multiple components of land-use intensity. Nature Communications, 2021, 12, 3918.                                                                                                                | 5.8  | 81        |
| 14 | Fruit bats and bat fruits: the evolution of fruit scent in relation to the foraging behaviour of bats in the New and Old World tropics. Functional Ecology, 2013, 27, 1075-1084.                                                                              | 1.7  | 72        |
| 15 | Chemical Ecology of Fruit Bat Foraging Behavior in Relation to the Fruit Odors of Two Species of<br>Paleotropical Bat-Dispersed Figs (Ficus hispida and Ficus scortechinii). Journal of Chemical Ecology,<br>2007, 33, 2097-2110.                             | 0.9  | 71        |
| 16 | Post-mating odor in females of the solitary bee, Andrena nigroaenea (Apoidea, Andrenidae), inhibits<br>male mating behavior. Behavioral Ecology and Sociobiology, 2000, 48, 303-307.                                                                          | 0.6  | 70        |
| 17 | Mating expenditures reduced via female sex pheromone modulation in the primitively eusocial<br>halictine bee, Lasioglossum ( Evylaeus ) malachurum (Hymenoptera: Halictidae). Behavioral Ecology<br>and Sociobiology, 1999, 45, 95-106.                       | 0.6  | 66        |
| 18 | Host location by visual and olfactory floral cues in an oligolectic bee: innate and learned behavior.<br>Behavioral Ecology, 2012, 23, 531-538.                                                                                                               | 1.0  | 66        |

| #  | Article                                                                                                                                                                                          | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Smells like aphids: orchid flowers mimic aphid alarm pheromones to attract hoverflies for pollination. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 1216-1222.            | 1.2 | 63        |
| 20 | Scent variation and hybridization cause the displacement of a sexually deceptive orchid species.<br>American Journal of Botany, 2008, 95, 472-481.                                               | 0.8 | 61        |
| 21 | Myrmecochorous plants use chemical mimicry to cheat seedâ€dispersing ants. Functional Ecology, 2010,<br>24, 545-555.                                                                             | 1.7 | 61        |
| 22 | Kin-based male mating preferences in two species of halictine bee. Behavioral Ecology and Sociobiology, 1987, 20, 313-318.                                                                       | 0.6 | 58        |
| 23 | Aphrodisiac Pheromones from the Wings of the Small Cabbage White and Large Cabbage White<br>Butterflies, <i>Pieris rapae</i> and <i>Pieris brassicae</i> . ChemBioChem, 2009, 10, 1666-1677.     | 1.3 | 57        |
| 24 | Complex sociogenetic organization and reproductive skew in a primitively eusocial sweat bee,<br>Lasioglossum malachurum, as revealed by microsatellites. Molecular Ecology, 2008, 11, 2405-2416. | 2.0 | 56        |
| 25 | The effect of temperature on male mating signals and female choice in the red mason bee, <i>Osmia<br/>bicornis</i> (L.). Ecology and Evolution, 2017, 7, 8966-8975.                              | 0.8 | 52        |
| 26 | From facultative to obligatory parental care: Interspecific variation in offspring dependency on post-hatching care in burying beetles. Scientific Reports, 2016, 6, 29323.                      | 1.6 | 50        |
| 27 | Fruit scent as an evolved signal to primate seed dispersal. Science Advances, 2018, 4, eaat4871.                                                                                                 | 4.7 | 49        |
| 28 | Integrating past and present studies on Ophrys pollination - a comment on Bradshaw et al Botanical<br>Journal of the Linnean Society, 2011, 165, 329-335.                                        | 0.8 | 48        |
| 29 | A hormone-related female anti-aphrodisiac signals temporary infertility and causes sexual abstinence<br>to synchronize parental care. Nature Communications, 2016, 7, 11035.                     | 5.8 | 48        |
| 30 | Spitting out information: Trigona bees deposit saliva to signal resource locations. Proceedings of the<br>Royal Society B: Biological Sciences, 2007, 274, 895-899.                              | 1.2 | 47        |
| 31 | The Chemical Basis of Host-Plant Recognition in a Specialized Bee Pollinator. Journal of Chemical Ecology, 2013, 39, 1347-1360.                                                                  | 0.9 | 47        |
| 32 | Finding flowers in the dark: nectar-feeding bats integrate olfaction and echolocation while foraging for nectar. Royal Society Open Science, 2016, 3, 160199.                                    | 1.1 | 47        |
| 33 | Beyond species recognition: somatic state affects long-distance sex pheromone communication.<br>Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20150832.                    | 1.2 | 43        |
| 34 | A Stingless Bee (Melipona seminigra) Marks Food Sources with a Pheromone from Its Claw Retractor<br>Tendons. Journal of Chemical Ecology, 2004, 30, 793-804.                                     | 0.9 | 41        |
| 35 | Workers Make the Queens in Melipona Bees: Identification of Geraniol as a Caste Determining<br>Compound from Labial Glands of Nurse Bees. Journal of Chemical Ecology, 2010, 36, 565-569.        | 0.9 | 41        |
| 36 | The evolution of fruit colour: phylogeny, abiotic factors and the role of mutualists. Scientific Reports, 2018, 8, 14302.                                                                        | 1.6 | 41        |

| #  | Article                                                                                                                                                                                      | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Hexyl Decanoate, the First Trail Pheromone Compound Identified in a Stingless Bee, Trigona recursa.<br>Journal of Chemical Ecology, 2006, 32, 1555-1564.                                     | 0.9 | 40        |
| 38 | An arthropod deterrent attracts specialised bees to their host plants. Oecologia, 2012, 168, 727-736.                                                                                        | 0.9 | 40        |
| 39 | Comparison of the flower scent of the sexually deceptive orchid Ophrys iricolor and the female sex pheromone of its pollinator Andrena morio. Chemoecology, 2007, 17, 231-233.               | 0.6 | 39        |
| 40 | Chemical recognition of fruit ripeness in spider monkeys (Ateles geoffroyi). Scientific Reports, 2015, 5, 14895.                                                                             | 1.6 | 39        |
| 41 | Identification of Queen Sex Pheromone Components of the Bumblebee Bombus terrestris. Journal of<br>Chemical Ecology, 2006, 32, 453-471.                                                      | 0.9 | 38        |
| 42 | Abandoning Aggression but Maintaining Self-Nonself Discrimination as a First Stage in Ant<br>Supercolony Formation. Current Biology, 2007, 17, 1903-1907.                                    | 1.8 | 38        |
| 43 | Can multiâ€ŧaxa diversity in European beech forest landscapes be increased by combining different<br>management systems?. Journal of Applied Ecology, 2020, 57, 1363-1375.                   | 1.9 | 38        |
| 44 | Speciation in sexually deceptive orchids: pollinator-driven selection maintains discrete odour phenotypes in hybridizing species. Biological Journal of the Linnean Society, 0, 98, 439-451. | 0.7 | 37        |
| 45 | Female choice in the red mason bee, <i>Osmia rufa</i> (L.) (Megachilidae). Journal of Experimental<br>Biology, 2010, 213, 4065-4073.                                                         | 0.8 | 36        |
| 46 | Fruit Odor as A Ripeness Signal for Seed-Dispersing Primates? A Case Study on Four Neotropical Plant<br>Species. Journal of Chemical Ecology, 2016, 42, 323-328.                             | 0.9 | 36        |
| 47 | Frugivores and the evolution of fruit colour. Biology Letters, 2018, 14, 20180377.                                                                                                           | 1.0 | 36        |
| 48 | Acceptance threshold theory can explain occurrence of homosexual behaviour. Biology Letters, 2015, 11, 20140603.                                                                             | 1.0 | 35        |
| 49 | Visual and Olfactory Floral Cues of Campanula (Campanulaceae) and Their Significance for Host<br>Recognition by an Oligolectic Bee Pollinator. PLoS ONE, 2015, 10, e0128577.                 | 1.1 | 34        |
| 50 | Pollination biology in the dioecious orchid Catasetum uncatum : How does floral scent influence the behaviour of pollinators?. Phytochemistry, 2015, 116, 149-161.                           | 1.4 | 33        |
| 51 | Species-Specific Antennal Responses to Tibial Fragrances by Male Orchid Bees. Journal of Chemical<br>Ecology, 2006, 32, 71-79.                                                               | 0.9 | 32        |
| 52 | Eleven years' data of grassland management in Germany. Biodiversity Data Journal, 2019, 7, e36387.                                                                                           | 0.4 | 32        |
| 53 | Caste- and colony-specific chemical signals on eggs of the bumble bee, Bombus terrestris L.<br>(Hymenoptera: Apidae). Chemoecology, 1999, 9, 119-126.                                        | 0.6 | 31        |
| 54 | The Trail Pheromone of a Stingless Bee, Trigona corvina (Hymenoptera, Apidae, Meliponini), Varies<br>between Populations. Chemical Senses, 2010, 35, 593-601.                                | 1.1 | 31        |

| #  | Article                                                                                                                                                                                                                                           | IF               | CITATIONS               |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------------------|
| 55 | Too Fresh Is Unattractive! The Attraction of Newly Emerged Nicrophorus vespilloides Females to<br>Odour Bouquets of Large Cadavers at Various Stages of Decomposition. PLoS ONE, 2013, 8, e58524.                                                 | 1.1              | 30                      |
| 56 | Identification of trail pheromone compounds from the labial glands of the stingless bee Geotrigona mombuca. Chemoecology, 2009, 19, 13-19.                                                                                                        | 0.6              | 29                      |
| 57 | Wax Lipids Signal Nest Identity in Bumblebee Colonies. Journal of Chemical Ecology, 2013, 39, 67-75.                                                                                                                                              | 0.9              | 29                      |
| 58 | Nest wax triggers worker reproduction in the bumblebee <i>Bombus terrestris</i> . Royal Society Open Science, 2016, 3, 150599.                                                                                                                    | 1.1              | 26                      |
| 59 | Function of bacterial community dynamics in the formation of cadaveric semiochemicals during <i>in situ</i> carcass decomposition. Environmental Microbiology, 2017, 19, 3310-3322.                                                               | 1.8              | 26                      |
| 60 | Temperature drives variation in flying insect biomass across a German malaise trap network. Insect<br>Conservation and Diversity, 2022, 15, 168-180.                                                                                              | 1.4              | 26                      |
| 61 | Perception of floral volatiles involved in host-plant finding behaviour: comparison of a bee specialist<br>and generalist. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral<br>Physiology, 2013, 199, 751-761. | 0.7              | 25                      |
| 62 | Increased divergence in floral morphology strongly reduces gene flow in sympatric sexually deceptive orchids with the same pollinator. Evolutionary Ecology, 2015, 29, 703-717.                                                                   | 0.5              | 25                      |
| 63 | Picky hitchâ€hikers: vector choice leads to directed dispersal and fatâ€ŧailed kernels in a passively<br>dispersing mite. Oikos, 2013, 122, 1254-1264.                                                                                            | 1.2              | 24                      |
| 64 | Interactions of local habitat type, landscape composition and flower availability moderate wild bee communities. Landscape Ecology, 2020, 35, 2209-2224.                                                                                          | 1.9              | 24                      |
| 65 | Telipogon peruvianus (Orchidaceae) Flowers Elicit Pre-Mating Behaviour in Eudejeania (Tachinidae)<br>Males for Pollination. PLoS ONE, 2016, 11, e0165896.                                                                                         | 1.1              | 24                      |
| 66 | How the social parasitic bumblebee Bombus bohemicus sneaks into power of reproduction. Behavioral<br>Ecology and Sociobiology, 2012, 66, 475-486.                                                                                                 | 0.6              | 23                      |
| 67 | Pitchers of <i>Nepenthes rajah</i> collect faecal droppings from both diurnal and nocturnal small mammals and emit fruity odour. Journal of Tropical Ecology, 2011, 27, 347-353.                                                                  | 0.5              | 22                      |
| 68 | A method for year-round rearing of cuckoo bumblebees (Hymenoptera:) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 227 2013, 49, 117-125.                                                                                                                   | Td (Apoid<br>0.4 | dea: <i>Boml<br/>22</i> |
| 69 | The Role of Vibrations in Population Divergence in the Red Mason Bee, Osmia bicornis. Current Biology, 2015, 25, 2819-2822.                                                                                                                       | 1.8              | 22                      |
| 70 | Staying with the young enhances the fathers' attractiveness in burying beetles. Evolution;<br>International Journal of Organic Evolution, 2017, 71, 985-994.                                                                                      | 1.1              | 22                      |
| 71 | Signal and reward in wild fleshy fruits: Does fruit scent predict nutrient content?. Ecology and Evolution, 2019, 9, 10534-10543.                                                                                                                 | 0.8              | 22                      |
| 72 | Macrocyclic Lactones Act as a Queen Pheromone in a Primitively Eusocial Sweat Bee. Current Biology, 2020, 30, 1136-1141.e3.                                                                                                                       | 1.8              | 22                      |

| #  | Article                                                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Stingless bees (Scaptotrigona pectoralis) learn foreign trail pheromones and use them to find food.<br>Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology,<br>2011, 197, 243-249.                                        | 0.7 | 21        |
| 74 | Volatile Organic Compounds of Decaying Piglet Cadavers Perceived by Nicrophorus vespilloides.<br>Journal of Chemical Ecology, 2016, 42, 756-767.                                                                                                                     | 0.9 | 21        |
| 75 | Ontogenetic Patterns in Amounts and Proportions of Dufour's Gland Volatile Secretions in Virgin<br>and Nesting Queens of Lasioglossum malachurum (Hymenoptera: Halictidae). Zeitschrift Fur<br>Naturforschung - Section C Journal of Biosciences, 1990, 45, 709-714. | 0.6 | 21        |
| 76 | Virgin queen execution in the stingless bee <i>Melipona beecheii</i> : The sign stimulus for worker attacks. Apidologie, 2009, 40, 496-507.                                                                                                                          | 0.9 | 19        |
| 77 | Kin discriminators in the eusocial sweat bee Lasioglossum malachurum: the reliability of cuticular<br>and Dufour's gland odours. Behavioral Ecology and Sociobiology, 2011, 65, 641-653.                                                                             | 0.6 | 19        |
| 78 | Beyond Cuticular Hydrocarbons: Chemically Mediated Mate Recognition in the Subsocial Burying<br>Beetle Nicrophorus vespilloides. Journal of Chemical Ecology, 2017, 43, 84-93.                                                                                       | 0.9 | 19        |
| 79 | Prolonged blooming season of flower plantings increases wild bee abundance and richness in agricultural landscapes. Biodiversity and Conservation, 2021, 30, 3003-3021.                                                                                              | 1.2 | 19        |
| 80 | Mating Behavior, Male Territoriality and Chemical Communication in the European Spiral-Horned Bees,<br>Systropha Planidens and S. curvicornis (Hymenoptera: Halictidae). Journal of the Kansas<br>Entomological Society, 2007, 80, 348-360.                          | 0.1 | 18        |
| 81 | Forest habitat parameters influence abundance and diversity of cadaver-visiting dung beetles in<br>Central Europe. Royal Society Open Science, 2020, 7, 191722.                                                                                                      | 1.1 | 18        |
| 82 | Learnt information in species-specific â€~trail pheromone' communication in stingless bees. Animal<br>Behaviour, 2013, 85, 225-232.                                                                                                                                  | 0.8 | 17        |
| 83 | Using multiple landscape genetic approaches to test the validity of genetic clusters in a species<br>characterized by an isolation-by-distance pattern. Biological Journal of the Linnean Society, 2016, 118,<br>292-303.                                            | 0.7 | 17        |
| 84 | Effects of abiotic environmental factors and land use on the diversity of carrion-visiting silphid beetles (Coleoptera: Silphidae): A large scale carrion study. PLoS ONE, 2018, 13, e0196839.                                                                       | 1.1 | 17        |
| 85 | The Attraction of the Dung Beetle Anoplotrupes stercorosus (Coleoptera: Geotrupidae) to Volatiles<br>from Vertebrate Cadavers. Insects, 2020, 11, 476.                                                                                                               | 1.0 | 17        |
| 86 | Sweet tooth: Elephants detect fruit sugar levels based on scent alone. Ecology and Evolution, 2020, 10, 11399-11407.                                                                                                                                                 | 0.8 | 16        |
| 87 | Sexual Deception in the Eucera-Pollinated Ophrys leochroma: A Chemical Intermediate between Wasp-<br>and Andrena-Pollinated Species. Journal of Chemical Ecology, 2017, 43, 469-479.                                                                                 | 0.9 | 15        |
| 88 | Fruit defence syndromes: the independent evolution of mechanical and chemical defences.<br>Evolutionary Ecology, 2017, 31, 913-923.                                                                                                                                  | 0.5 | 15        |
| 89 | Bumblebee Behavior on Flowers, but Not Initial Attraction, Is Altered by Short-Term Drought Stress.<br>Frontiers in Plant Science, 2020, 11, 564802.                                                                                                                 | 1.7 | 15        |
| 90 | Species specificity of Dufour's gland morphology and volatile secretions in kleptoparasitic Sphecodes bees (Hymenoptera: Halictidae). Biochemical Systematics and Ecology, 1992, 20, 351-362.                                                                        | 0.6 | 13        |

| #   | Article                                                                                                                                                                                                                   | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Subtle Chemical Variations with Strong Ecological Significance: Stereoselective Responses of Male<br>Orchid Bees to Stereoisomers of Carvone Epoxide. Journal of Chemical Ecology, 2019, 45, 464-473.                     | 0.9 | 13        |
| 92  | The chemical and visual bases of the pollination of the Neotropical sexually deceptive orchid Telipogon peruvianus. New Phytologist, 2019, 223, 1989-2001.                                                                | 3.5 | 13        |
| 93  | The evolution of fruit scent: phylogenetic and developmental constraints. BMC Evolutionary Biology, 2020, 20, 138.                                                                                                        | 3.2 | 13        |
| 94  | Three-year pot culture of Epipactis helleborine reveals autotrophic survival, without mycorrhizal networks, in a mixotrophic species. Mycorrhiza, 2020, 30, 51-61.                                                        | 1.3 | 13        |
| 95  | The sensory ecology of fear: African elephants show aversion to olfactory predator signals.<br>Conservation Science and Practice, 2021, 3, e333.                                                                          | 0.9 | 13        |
| 96  | Manipulation of parental nutritional condition reveals competition among family members. Journal of Evolutionary Biology, 2018, 31, 822-832.                                                                              | 0.8 | 12        |
| 97  | Sexual dimorphism in floral scents of the neotropical orchid Catasetum arietinum and its possible ecological and evolutionary significance. AoB PLANTS, 2020, 12, .                                                       | 1.2 | 12        |
| 98  | Recruits of the stingless bee Scaptotrigona pectoralis learn food odors from the nest atmosphere.<br>Die Naturwissenschaften, 2010, 97, 519-524.                                                                          | 0.6 | 11        |
| 99  | Host choice in a bivoltine bee: how sensory constraints shape innate foraging behaviors. BMC Ecology, 2016, 16, 20.                                                                                                       | 3.0 | 11        |
| 100 | Nocturnal scent in a â€~bird-fig': A cue to attract bats as additional dispersers?. PLoS ONE, 2019, 14,<br>e0220461.                                                                                                      | 1.1 | 11        |
| 101 | Queen Recognition Signals in Two Primitively Eusocial Halictid Bees: Evolutionary Conservation and Caste-Specific Perception. Insects, 2019, 10, 416.                                                                     | 1.0 | 11        |
| 102 | Is flower selection influenced by chemical imprinting to larval food provisions in the generalist bee<br>Osmia bicornis (Megachilidae)?. Apidologie, 2012, 43, 698-714.                                                   | 0.9 | 10        |
| 103 | Variation in sex pheromone emission does not reflect immunocompetence but affects attractiveness<br>of male burying beetles—a combination of laboratory and field experiments. Die Naturwissenschaften,<br>2017, 104, 53. | 0.6 | 10        |
| 104 | Evolution of Caste-Specific Chemical Profiles in Halictid Bees. Journal of Chemical Ecology, 2018, 44, 827-837.                                                                                                           | 0.9 | 10        |
| 105 | Fruit Scent: Biochemistry, Ecological Function, and Evolution. Reference Series in Phytochemistry, 2020, , 403-425.                                                                                                       | 0.2 | 10        |
| 106 | Specialist Bombus vestalis and generalist Bombus bohemicus use different odour cues to find their host Bombus terrestris. Animal Behaviour, 2010, 80, 297-302.                                                            | 0.8 | 9         |
| 107 | The role of preadaptations or evolutionary novelties for the evolution of sexually deceptive orchids.<br>New Phytologist, 2014, 203, 710-712.                                                                             | 3.5 | 9         |
| 108 | Flower Visitors of Campanula: Are Oligoleges More Sensitive to Host-Specific Floral Scents Than Polyleges?. Journal of Chemical Ecology, 2017, 43, 4-12.                                                                  | 0.9 | 9         |

| #   | Article                                                                                                                                                                                                                           | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Natural Compounds as Spider Repellents: Fact or Myth?. Journal of Economic Entomology, 2018, 111, 314-318.                                                                                                                        | 0.8 | 9         |
| 110 | Present and historical landscape structure shapes current species richness in Central European grasslands. Landscape Ecology, 2022, 37, 745-762.                                                                                  | 1.9 | 9         |
| 111 | Two phylogenetically distinct species of sexually deceptive orchids mimic the sex pheromone of their single common pollinator, the cuckoo bumblebee Bombus vestalis. Chemoecology, 2011, 21, 243-252.                             | 0.6 | 8         |
| 112 | A scent shield to survive: identification of the repellent compounds secreted by the male offspring of the cuckoo bumblebee <i><scp>B</scp>ombus vestalis</i> . Entomologia Experimentalis Et Applicata, 2015, 157, 263-270.      | 0.7 | 8         |
| 113 | Neural and behavioural responses of the pollen-specialist bee <i>Andrena<br/>vaga</i> to <i>Salix</i> odours. Journal of Experimental Biology, 2021, 224, .                                                                       | 0.8 | 8         |
| 114 | Among stand heterogeneity is key for biodiversity in managed beech forests but does not question the value of unmanaged forests: Response to Bruun and Heilmannâ€Clausen (2021). Journal of Applied Ecology, 2021, 58, 1817-1826. | 1.9 | 8         |
| 115 | Pheromone communication among sexes of the garden cross spider Araneus diadematus. Die<br>Naturwissenschaften, 2021, 108, 38.                                                                                                     | 0.6 | 8         |
| 116 | Land-use intensity and landscape structure drive the acoustic composition of grasslands.<br>Agriculture, Ecosystems and Environment, 2022, 328, 107845.                                                                           | 2.5 | 8         |
| 117 | A scientific note on virgin queen acceptance in stingless bees: evidence for the importance of queen aggression. Apidologie, 2010, 41, 38-39.                                                                                     | 0.9 | 7         |
| 118 | Species boundaries in the Ophrys iricolor group in Tunisia: do local endemics always matter?. Plant<br>Systematics and Evolution, 2016, 302, 481-489.                                                                             | 0.3 | 7         |
| 119 | Local and Landscape Effects on Carrion-Associated Rove Beetle (Coleoptera: Staphylinidae)<br>Communities in German Forests. Insects, 2020, 11, 828.                                                                               | 1.0 | 7         |
| 120 | Fruit Selectivity in Anthropoid Primates: Size Matters. International Journal of Primatology, 2020, 41, 525-537.                                                                                                                  | 0.9 | 7         |
| 121 | Contribution of males to brood care can compensate for their food consumption from a shared resource. Ecology and Evolution, 2020, 10, 3535-3543.                                                                                 | 0.8 | 7         |
| 122 | Genetic diversity in natural populations of the endangered Neotropical orchid <i>Telipogon peruvianus</i> . Plant Species Biology, 2021, 36, 6-16.                                                                                | 0.6 | 7         |
| 123 | Temporal variability of the rove beetle (Coleoptera: Staphylinidae) community on small vertebrate carrion and its potential use for forensic entomology. Forensic Science International, 2021, 323, 110792.                       | 1.3 | 7         |
| 124 | Divergence in male sexual odor signal and genetics across populations of the red mason bee, Osmia bicornis, in Europe. PLoS ONE, 2018, 13, e0193153.                                                                              | 1.1 | 7         |
| 125 | A scientific note on trail pheromone communication in a stingless bee, Scaptotrigona pectoralis<br>(Hymenoptera, Apidae, Meliponini). Apidologie, 2011, 42, 708-710.                                                              | 0.9 | 6         |
| 126 | Floral traits are associated with the quality but not quantity of heterospecific stigmatic pollen loads. BMC Ecology, 2020, 20, 54.                                                                                               | 3.0 | 6         |

| #   | Article                                                                                                                                                                                                                                           | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Olfactory and Visual Floral Signals of Hedera helix and Heracleum sphondylium Involved in Host<br>Finding by Nectar-Foraging Social Wasps. Frontiers in Ecology and Evolution, 2020, 8, .                                                         | 1.1 | 5         |
| 128 | Cuticular and Dufour's Gland Chemistry Reflect Reproductive and Social State in the Facultatively<br>Eusocial Sweat Bee Megalopta genalis (Hymenoptera: Halictidae). Journal of Chemical Ecology, 2021, 47,<br>420-432.                           | 0.9 | 5         |
| 129 | The differences in the vibrational signals between male O. bicornis from three countries in Europe.<br>Journal of Low Frequency Noise Vibration and Active Control, 2019, 38, 871-878.                                                            | 1.3 | 4         |
| 130 | Specialization for Tachinid Fly Pollination in the Phenologically Divergent Varieties of the Orchid Neotinea ustulata. Frontiers in Ecology and Evolution, 2021, 9, .                                                                             | 1.1 | 4         |
| 131 | Land-use stress alters cuticular chemical surface profile and morphology in the bumble bee Bombus<br>lapidarius. PLoS ONE, 2022, 17, e0268474.                                                                                                    | 1.1 | 4         |
| 132 | The uncinate viscidium and floral setae, an evolutionary innovation and exaptation to increase pollination success in the Telipogon alliance (Orchidaceae: Oncidiinae). Organisms Diversity and Evolution, 2020, 20, 537-550.                     | 0.7 | 3         |
| 133 | The evolution of tachinid pollination in <i>Neotinea ustulata</i> is related to floral cuticular composition and the combined high relative production of ( <i>Z</i> )â€11â€C23/C25enes. Journal of Systematics and Evolution, 2023, 61, 487-497. | 1.6 | 3         |
| 134 | The origin of the compounds found on males' antennae of the red mason bee, Osmia bicornis (L.).<br>Chemoecology, 2017, 27, 207-216.                                                                                                               | 0.6 | 2         |
| 135 | Differential Evolutionary History in Visual and Olfactory Floral Cues of the Bee-Pollinated Genus<br>Campanula (Campanulaceae). Plants, 2021, 10, 1356.                                                                                           | 1.6 | 2         |
| 136 | Fruit Scent: Biochemistry, Ecological Function, and Evolution. Reference Series in Phytochemistry, 2019, , 1-23.                                                                                                                                  | 0.2 | 1         |
| 137 | Chemical Variation among Castes, Female Life Stages and Populations of the Facultative Eusocial<br>Sweat Bee Halictus rubicundus (Hymenoptera: Halictidae). Journal of Chemical Ecology, 2021, 47,<br>406-419.                                    | 0.9 | 1         |
| 138 | Reproductive character displacement allows two sexually deceptive orchids to coexist and attract the same specific pollinator. Evolutionary Ecology, 2022, 36, 217.                                                                               | 0.5 | 1         |
| 139 | The Impact of Environmental Factors on the Efficacy of Chemical Communication in the Burying Beetle<br>(Coleoptera: Silphidae). Journal of Insect Science, 2020, 20, .                                                                            | 0.6 | О         |