

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2353344/publications.pdf Version: 2024-02-01

FENCL

#	Article	IF	CITATIONS
1	Interparticle gap geometry effects on chiroptical properties of plasmonic nanoparticle assemblies. Nanotechnology, 2022, 33, 125203.	2.6	1
2	Interplay of electrochemical and electrical effects induces structural transformations in electrocatalysts. Nature Catalysis, 2021, 4, 479-487.	34.4	68
3	Two-Dimensional Conductive Metal–Organic Frameworks as Highly Efficient Electrocatalysts for Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2021, 13, 61205-61214.	8.0	15
4	On the Performance and Structural Stability of Cathodic Electrocatalysts with Complex Nanoscale Morphology. ECS Meeting Abstracts, 2020, MA2020-01, 2709-2709.	0.0	0
5	Electrocatalytic Urea and Ammonia Oxidation for Cell Voltage Optimization in CO2 Electrolyzers. ECS Meeting Abstracts, 2020, MA2020-01, 2622-2622.	0.0	0
6	Coupling of Various Aqueous Anodic Reactions with Direct and Indirect Electroreduction of CO2 in Organic Media. ECS Meeting Abstracts, 2020, MA2020-01, 2641-2641.	0.0	0
7	Pd–CNT–SiO ₂ nanoskein: composite structure design for formic acid dehydrogenation. Chemical Communications, 2019, 55, 10733-10736.	4.1	14
8	Reductive and Coordinative Effects of Hydrazine in Structural Transformations of Copper Hydroxide Nanoparticles. Nanomaterials, 2019, 9, 1445.	4.1	14
9	An aligned octahedral core in a nanocage: synthesis, plasmonic, and catalytic properties. Nanoscale, 2019, 11, 3138-3144.	5.6	12
10	Cu(<scp>ii</scp>)-nanoparticle-derived structures under CO ₂ reduction conditions: a matter of shape. Physical Chemistry Chemical Physics, 2019, 21, 5894-5897.	2.8	7
11	Novel Conductive Metal–Organic Framework for a High-Performance Lithium–Sulfur Battery Host: 2D Cu-Benzenehexathial (BHT). ACS Applied Materials & Interfaces, 2018, 10, 15012-15020.	8.0	105
12	3D core–shell MoS ₂ superspheres composed of oriented nanosheets with quasi molecular superlattices: mimicked embryo formation and Li-storage properties. Journal of Materials Chemistry A, 2018, 6, 18498-18507.	10.3	32
13	Is borophene a suitable anode material for sodium ion battery?. Journal of Alloys and Compounds, 2017, 704, 152-159.	5.5	62
14	Enhanced electrocatalytic performance of palladium nanoparticles with high energy surfaces in formic acid oxidation. Journal of Materials Chemistry A, 2017, 5, 11582-11585.	10.3	58
15	Electrocatalytic Activity and Design Principles of Heteroatom-Doped Graphene Catalysts for Oxygen-Reduction Reaction. Journal of Physical Chemistry C, 2017, 121, 14434-14442.	3.1	49
16	The Role of Intrinsic Defects in Electrocatalytic Activity of Monolayer VS ₂ Basal Planes for the Hydrogen Evolution Reaction. Journal of Physical Chemistry C, 2017, 121, 1530-1536.	3.1	93
17	Defect Engineering in MoSe ₂ for the Hydrogen Evolution Reaction: From Point Defects to Edges. ACS Applied Materials & Interfaces, 2017, 9, 42688-42698.	8.0	171
18	Borophene as Efficient Sulfur Hosts for Lithium–Sulfur Batteries: Suppressing Shuttle Effect and Improving Conductivity. Journal of Physical Chemistry C, 2017, 121, 15549-15555.	3.1	97

Feng Li

#	Article	IF	CITATIONS
19	Stabilizing sulfur cathodes using nitrogen-doped graphene as a chemical immobilizer for Li S batteries. Carbon, 2016, 108, 120-126.	10.3	134
20	Linear assembly of patchy and non-patchy nanoparticles. Faraday Discussions, 2016, 191, 189-204.	3.2	26
21	Understanding the interactions between lithium polysulfides and N-doped graphene using density functional theory calculations. Nano Energy, 2016, 25, 203-210.	16.0	347
22	Large-Scale Synthesis of Metal Nanocrystals in Aqueous Suspensions. Chemistry of Materials, 2016, 28, 3196-3202.	6.7	37
23	Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration. Nature, 2016, 537, 382-386.	27.8	1,429
24	Unveiling the atomic structure and electronic properties of atomically thin boron sheets on an Ag(111) surface. Nanoscale, 2016, 8, 16284-16291.	5.6	59
25	Rational Design of Efficient Palladium Catalysts for Electroreduction of Carbon Dioxide to Formate. ACS Catalysis, 2016, 6, 8115-8120.	11.2	277
26	The capacity fading mechanism and improvement of cycling stability in MoS ₂ -based anode materials for lithium-ion batteries. Nanoscale, 2016, 8, 2918-2926.	5.6	168
27	Invisible growth of microstructural defects in graphene chemical vapor deposition on copper foil. Carbon, 2016, 96, 237-242.	10.3	43
28	Atomic Mechanism of Electrocatalytically Active Co–N Complexes in Graphene Basal Plane for Oxygen Reduction Reaction. ACS Applied Materials & Interfaces, 2015, 7, 27405-27413.	8.0	139
29	Self-assembled plasmonic nanostructures. Chemical Society Reviews, 2014, 43, 3976.	38.1	276
30	Structural and Optical Properties of Self-Assembled Chains of Plasmonic Nanocubes. Nano Letters, 2014, 14, 6314-6321.	9.1	92
31	Structural Transitions in Nanoparticle Assemblies Governed by Competing Nanoscale Forces. Journal of the American Chemical Society, 2013, 135, 10262-10265.	13.7	100