Wenyu Lin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2353260/publications.pdf Version: 2024-02-01

WENVILLIN

#	Article	IF	CITATIONS
1	[18F]MAGL-4-11 positron emission tomography molecular imaging of monoacylglycerol lipase changes in preclinical liver fibrosis models. Acta Pharmaceutica Sinica B, 2022, 12, 308-315.	12.0	11
2	A New Model to Assess Hepatitis B Virus Covalently Closed Circular DNA: A Window Into a Previously Hidden Space?. Cellular and Molecular Gastroenterology and Hepatology, 2022, 13, 1255-1256.	4.5	2
3	Hepatitis B and Hepatitis C Virus Infection Promote Liver Fibrogenesis through a TGF-β1–Induced OCT4/Nanog Pathway. Journal of Immunology, 2022, 208, 672-684.	0.8	12
4	Editorial: Diagnosis, Treatment, and Prognosis of Viral Hepatitis. Frontiers in Medicine, 2022, 9, 882878.	2.6	1
5	Fatty Acids Activate the Transcriptional Coactivator YAP1 to Promote Liver Fibrosis via p38 Mitogen-Activated Protein Kinase. Cellular and Molecular Gastroenterology and Hepatology, 2021, 12, 1297-1310.	4.5	28
6	Inflammatory microenvironment of fibrotic liver promotes hepatocellular carcinoma growth, metastasis and sorafenib resistance through STAT3 activation. Journal of Cellular and Molecular Medicine, 2021, 25, 1568-1582.	3.6	21
7	Differentially expressed immune response genes in COVID-19 patients based on disease severity. Aging, 2021, 13, 9265-9276.	3.1	27
8	The risk of hepatitis C virus recurrence in hepatitis C virusâ€infected patients treated with directâ€acting antivirals after achieving a sustained virological response: A comprehensive analysis. Liver International, 2021, 41, 2341-2357.	3.9	3
9	Assessment of Non-invasive Markers for the Prediction of Esophageal Variceal Hemorrhage. Frontiers in Medicine, 2021, 8, 770836.	2.6	2
10	Pyruvate Kinase M2 Tetramerization Protects against Hepatic Stellate Cell Activation and LiverÂFibrosis. American Journal of Pathology, 2020, 190, 2267-2281.	3.8	32
11	Virus detection using nanoparticles and deep neural network–enabled smartphone system. Science Advances, 2020, 6, .	10.3	39
12	[18F]-Alfatide PET imaging of integrin αvβ3 for the non-invasive quantification of liver fibrosis. Journal of Hepatology, 2020, 73, 161-169.	3.7	17
13	Dexmedetomidine promotes the progression of hepatocellular carcinoma through hepatic stellate cell activation. Experimental and Molecular Medicine, 2020, 52, 1062-1074.	7.7	29
14	2′, 5′-Oligoadenylate Synthetase 2 (OAS2) Inhibits Zika Virus Replication through Activation of Type Ι IFN Signaling Pathway. Viruses, 2020, 12, 418.	3.3	24
15	COVID-19 induced liver function abnormality associates with age. Aging, 2020, 12, 13895-13904.	3.1	13
16	Microrna-130a Downregulates HCV Replication through an atg5-Dependent Autophagy Pathway. Cells, 2019, 8, 338.	4.1	19
17	A Long Noncoding RNA Regulates Hepatitis C Virus Infection Through Interferon Alpha–Inducible Protein 6. Hepatology, 2019, 69, 1004-1019.	7.3	45
18	MicroRNA 130a Regulates both Hepatitis C Virus and Hepatitis B Virus Replication through a Central Metabolic Pathway. Journal of Virology, 2018, 92, .	3.4	32

Wenyu Lin

#	Article	IF	CITATIONS
19	Tyrosine kinase SYK is a potential therapeutic target for liver fibrosis. Hepatology, 2018, 68, 1125-1139.	7.3	74
20	Intermittent hypoxia is a proinflammatory stimulus resulting in ILâ€6 expression and M1 macrophage polarization. Hepatology Communications, 2017, 1, 326-337.	4.3	29
21	HELZ2 Is an IFN Effector Mediating Suppression of Dengue Virus. Frontiers in Microbiology, 2017, 8, 240.	3.5	38
22	Overexpression of c-Met in bone marrow mesenchymal stem cells improves their effectiveness in homing and repair of acute liver failure. Stem Cell Research and Therapy, 2017, 8, 162.	5.5	35
23	HCV induces transforming growth factor β1 through activation of endoplasmic reticulum stress and the unfolded protein response. Scientific Reports, 2016, 6, 22487.	3.3	66
24	IQCAP2 is a novel interferon-alpha antiviral effector gene acting non-conventionally through the NF-κB pathway. Journal of Hepatology, 2016, 65, 972-979.	3.7	16
25	Exposure to human immunodeficiency virus/hepatitis C virus in hepatic and stellate cell lines reveals cooperative profibrotic transcriptional activation between viruses and cell types. Hepatology, 2016, 64, 1951-1968.	7.3	36
26	Apolipoprotein B100 is required for hepatitis C infectivity and Mipomersen inhibits hepatitis C. World Journal of Gastroenterology, 2016, 22, 9954.	3.3	6
27	EFTUD2 Is a Novel Innate Immune Regulator Restricting Hepatitis C Virus Infection through the RIG-I/MDA5 Pathway. Journal of Virology, 2015, 89, 6608-6618.	3.4	37
28	The spliceosome factor SART1 exerts its anti-HCV action through mRNA splicing. Journal of Hepatology, 2015, 62, 1024-1032.	3.7	24
29	EFTUD2 on innate immunity. Oncotarget, 2015, 6, 32313-32314.	1.8	7
30	TRAIL Enhances Apoptosis of Human Hepatocellular Carcinoma Cells Sensitized by Hepatitis C Virus Infection: Therapeutic Implications. PLoS ONE, 2014, 9, e98171.	2.5	12
31	Kinetic differences in the induction of interferon stimulated genes by interferon-α and interleukin 28B are altered by infection with hepatitis C virus. Hepatology, 2014, 59, 1250-1261.	7.3	102
32	Pathogenesis of Accelerated Fibrosis in HIV/HCV Co-infection. Journal of Infectious Diseases, 2013, 207, S13-S18.	4.0	83
33	A functional genomic screen reveals novel host genes that mediate interferon-alpha's effects against hepatitis C virus. Journal of Hepatology, 2012, 56, 326-333.	3.7	60
34	Development of an Accurate Index for Predicting Outcomes of Patients With Acute Liver Failure. Gastroenterology, 2012, 143, 1237-1243.	1.3	125
35	Hepatitis C Virus NS5A Disrupts STAT1 Phosphorylation and Suppresses Type I Interferon Signaling. Journal of Virology, 2012, 86, 8581-8591.	3.4	73
36	HIV and HCV Cooperatively Promote Hepatic Fibrogenesis via Induction of Reactive Oxygen Species and NFIºB. Journal of Biological Chemistry, 2011, 286, 2665-2674.	3.4	99

Wenyu Lin

#	Article	IF	CITATIONS
37	Hepatitis C Virus Regulates Transforming Growth Factor β1 Production Through the Generation of Reactive Oxygen Species in a Nuclear Factor κB–Dependent Manner. Gastroenterology, 2010, 138, 2509-2518.e1.	1.3	177
38	HIV Increases HCV Replication in a TGF-β1–Dependent Manner. Gastroenterology, 2008, 134, 803-811.	1.3	132
39	A Cell-Based, High-Throughput Screen for Small Molecule Regulators of Hepatitis C Virus Replication. Gastroenterology, 2007, 132, 311-320.	1.3	86
40	Hepatitis C Virus Core Protein Blocks Interferon Signaling by Interaction with the STAT1 SH2 Domain. Journal of Virology, 2006, 80, 9226-9235.	3.4	167
41	Hepatitis C virus expression suppresses interferon signaling by degrading STAT1. Gastroenterology, 2005, 128, 1034-1041.	1.3	141
42	Use of human leukocyte-specific monoclonal antibodies for clinically immunophenotyping lymphocytes of rhesus monkeys. Cytometry, 1994, 17, 102-108.	1.8	101
43	LOXL-2 and TNC-C are markers of liver fibrogenesis in HCV/HIV-, HIV- and HCV-infected patients. Biomarkers in Medicine, 0, , .	1.4	1