
## Himanshu Khandelia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2353107/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                               | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Triglyceride Blisters in Lipid Bilayers: Implications for Lipid Droplet Biogenesis and the Mobile Lipid<br>Signal in Cancer Cell Membranes. PLoS ONE, 2010, 5, e12811.                                                | 2.5  | 138       |
| 2  | Neurological disease mutations compromise a C-terminal ion pathway in the Na+/K+-ATPase. Nature, 2010, 467, 99-102.                                                                                                   | 27.8 | 125       |
| 3  | The impact of peptides on lipid membranes. Biochimica Et Biophysica Acta - Biomembranes, 2008, 1778,<br>1528-1536.                                                                                                    | 2.6  | 124       |
| 4  | Lipid Gymnastics: Evidence of Complete Acyl Chain Reversal in Oxidized Phospholipids from Molecular<br>Simulations. Biophysical Journal, 2009, 96, 2734-2743.                                                         | 0.5  | 117       |
| 5  | Molecular dynamics simulations of the interactions of medicinal plant extracts and drugs with lipid bilayer membranes. FEBS Journal, 2013, 280, 2785-2805.                                                            | 4.7  | 98        |
| 6  | Molecular mechanism of the allosteric enhancement of the umami taste sensation. FEBS Journal, 2012, 279, 3112-3120.                                                                                                   | 4.7  | 88        |
| 7  | Cationâ~ï€ Interactions Stabilize the Structure of the Antimicrobial Peptide Indolicidin near<br>Membranes:Â Molecular Dynamics Simulations. Journal of Physical Chemistry B, 2007, 111, 242-250.                     | 2.6  | 83        |
| 8  | Structure of the antimicrobial β-hairpin peptide protegrin-1 in a DLPC lipid bilayer investigated by molecular dynamics simulation. Biochimica Et Biophysica Acta - Biomembranes, 2007, 1768, 509-520.                | 2.6  | 56        |
| 9  | The N Terminus of Sarcolipin Plays an Important Role in Uncoupling Sarco-endoplasmic Reticulum<br>Ca2+-ATPase (SERCA) ATP Hydrolysis from Ca2+ Transport. Journal of Biological Chemistry, 2015, 290,<br>14057-14067. | 3.4  | 56        |
| 10 | Membrane Tubulation in Lipid Vesicles Triggered by the Local Application of Calcium Ions. Langmuir, 2017, 33, 11010-11017.                                                                                            | 3.5  | 51        |
| 11 | Molecular dynamics simulations of helical antimicrobial peptides in SDS micelles: What do point mutations achieve?. Peptides, 2005, 26, 2037-2049.                                                                    | 2.4  | 50        |
| 12 | Inclusion of Terpenoid Plant Extracts in Lipid Bilayers Investigated by Molecular Dynamics<br>Simulations. Journal of Physical Chemistry B, 2010, 114, 15825-15831.                                                   | 2.6  | 44        |
| 13 | Correlation between simulated physicochemical properties and hemolycity of protegrin-like antimicrobial peptides: Predicting experimental toxicity. Peptides, 2008, 29, 1085-1093.                                    | 2.4  | 42        |
| 14 | Driving engineering of novel antimicrobial peptides from simulations of peptide–micelle interactions.<br>Biochimica Et Biophysica Acta - Biomembranes, 2006, 1758, 1224-1234.                                         | 2.6  | 41        |
| 15 | How can a β-sheet peptide be both a potent antimicrobial and harmfully toxic? Molecular dynamics simulations of protegrin-1 in micelles. Biopolymers, 2006, 84, 219-231.                                              | 2.4  | 41        |
| 16 | High-Affinity Small Moleculeâ^'Phospholipid Complex Formation: Binding of Siramesine to Phosphatidic<br>Acid. Journal of the American Chemical Society, 2008, 130, 12953-12960.                                       | 13.7 | 38        |
| 17 | Tuning of the Na,K-ATPase by the beta subunit. Scientific Reports, 2016, 6, 20442.                                                                                                                                    | 3.3  | 37        |
| 18 | Molecular dynamics investigation of the influence of anionic and zwitterionic interfaces on<br>antimicrobial peptides' structure: Implications for peptide toxicity and activity. Peptides, 2006, 27,<br>1192-1200.   | 2.4  | 35        |

| #  | Article                                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Pairing of cholesterol with oxidized phospholipid species in lipid bilayers. Soft Matter, 2014, 10, 639-647.                                                                                                                              | 2.7 | 35        |
| 20 | Accelerating All-Atom MD Simulations of Lipids Using a Modified Virtual-Sites Technique. Journal of Chemical Theory and Computation, 2014, 10, 5690-5695.                                                                                 | 5.3 | 34        |
| 21 | Faster Simulations with a 5 fs Time Step for Lipids in the CHARMM Force Field. Journal of Chemical Theory and Computation, 2018, 14, 3342-3350.                                                                                           | 5.3 | 34        |
| 22 | Interaction of Salicylate and a Terpenoid Plant Extract with Model Membranes: Reconciling Experiments and Simulations. Biophysical Journal, 2010, 99, 3887-3894.                                                                          | 0.5 | 30        |
| 23 | Molecular Dynamics Simulations of the Helical Antimicrobial Peptide Ovispirin-1 in a Zwitterionic<br>Dodecylphosphocholine Micelle:  Insights into Host-Cell Toxicity. Journal of Physical Chemistry B,<br>2005, 109, 12990-12996.        | 2.6 | 28        |
| 24 | Interdisciplinary Synergy to Reveal Mechanisms of Annexin-Mediated Plasma Membrane Shaping and<br>Repair. Cells, 2020, 9, 1029.                                                                                                           | 4.1 | 28        |
| 25 | Annexin A4 trimers are recruited by high membrane curvatures in giant plasma membrane vesicles. Soft<br>Matter, 2021, 17, 308-318.                                                                                                        | 2.7 | 28        |
| 26 | Selective chemical binding enhances cesium tolerance in plants through inhibition of cesium uptake.<br>Scientific Reports, 2015, 5, 8842.                                                                                                 | 3.3 | 27        |
| 27 | Clearance of activityâ€evoked K <sup>+</sup> transients and associated glia cell swelling occur<br>independently of <scp>AQP4</scp> : A study with an isoformâ€selective <scp>AQP4</scp> inhibitor. Glia,<br>2021, 69, 28-41.             | 4.9 | 27        |
| 28 | Interaction of N-terminal peptide analogues of the Na+,K+-ATPase with membranes. Biochimica Et<br>Biophysica Acta - Biomembranes, 2018, 1860, 1282-1291.                                                                                  | 2.6 | 26        |
| 29 | Distribution of Neutral Lipids in the Lipid Droplet Core. Journal of Physical Chemistry B, 2014, 118, 11145-11151.                                                                                                                        | 2.6 | 24        |
| 30 | Quantifying the Relationship between Curvature and Electric Potential in Lipid Bilayers. Journal of<br>Physical Chemistry B, 2016, 120, 4812-4817.                                                                                        | 2.6 | 24        |
| 31 | The CAPOS mutation in ATP1A3 alters Na/K-ATPase function and results in auditory neuropathy which has implications for management. Human Genetics, 2018, 137, 111-127.                                                                    | 3.8 | 24        |
| 32 | Relative free energy of binding between antimicrobial peptides and SDS or DPC micelles. Molecular<br>Simulation, 2009, 35, 986-997.                                                                                                       | 2.0 | 23        |
| 33 | To Gate or Not To Gate: Using Molecular Dynamics Simulations To Morph Gated Plant Aquaporins into<br>Constitutively Open Conformations. Journal of Physical Chemistry B, 2009, 113, 5239-5244.                                            | 2.6 | 23        |
| 34 | Protein Kinase A (PKA) Phosphorylation of Na+/K+-ATPase Opens Intracellular C-terminal Water<br>Pathway Leading to Third Na+-binding site in Molecular Dynamics Simulations*. Journal of Biological<br>Chemistry, 2012, 287, 15959-15965. | 3.4 | 23        |
| 35 | Molecular Mechanism of Na <sup>+</sup> ,K <sup>+</sup> -ATPase Malfunction in Mutations<br>Characteristic of Adrenal Hypertension. Biochemistry, 2014, 53, 746-754.                                                                       | 2.5 | 23        |
| 36 | Lipid Structure in Triolein Lipid Droplets. Journal of Physical Chemistry B, 2014, 118, 10335-10340.                                                                                                                                      | 2.6 | 22        |

HIMANSHU KHANDELIA

| #  | Article                                                                                                                                                                                                          | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | The effects of globotriaosylceramide tail saturation level on bilayer phases. Soft Matter, 2015, 11, 1352-1361.                                                                                                  | 2.7 | 22        |
| 38 | Electrostatic Stabilization Plays a Central Role in Autoinhibitory Regulation of the Na+,K+-ATPase.<br>Biophysical Journal, 2017, 112, 288-299.                                                                  | 0.5 | 22        |
| 39 | A single K+-binding site in the crystal structure of the gastric proton pump. ELife, 2019, 8, .                                                                                                                  | 6.0 | 22        |
| 40 | Lipid peroxidation and water penetration in lipid bilayers: A W-band EPR study. Biochimica Et Biophysica<br>Acta - Biomembranes, 2013, 1828, 510-517.                                                            | 2.6 | 21        |
| 41 | Perillyl alcohol: Dynamic interactions with the lipid bilayer and implications for long-term inhalational chemotherapy for gliomas. , 2016, 7, 1.                                                                |     | 19        |
| 42 | Propofol modulates the lipid phase transition and localizes near the headgroup of membranes.<br>Chemistry and Physics of Lipids, 2013, 175-176, 84-91.                                                           | 3.2 | 18        |
| 43 | The role of caveolin-1 in lipid droplets and their biogenesis. Chemistry and Physics of Lipids, 2018, 211, 93-99.                                                                                                | 3.2 | 18        |
| 44 | EnCurv: Simple Technique of Maintaining Global Membrane Curvature in Molecular Dynamics<br>Simulations. Journal of Chemical Theory and Computation, 2021, 17, 1181-1193.                                         | 5.3 | 18        |
| 45 | Design of new fluorescent cholesterol and ergosterol analogs: Insights from theory. Biochimica Et<br>Biophysica Acta - Biomembranes, 2015, 1848, 2188-2199.                                                      | 2.6 | 17        |
| 46 | Reinforcing the membrane-mediated mechanism of action of the anti-tuberculosis candidate drug<br>thioridazine with molecular simulations. Journal of Computer-Aided Molecular Design, 2014, 28,<br>123-134.      | 2.9 | 16        |
| 47 | Phenothiazines alter plasma membrane properties andÂsensitize cancer cells to injury by inhibiting annexin-mediated repair. Journal of Biological Chemistry, 2021, 297, 101012.                                  | 3.4 | 16        |
| 48 | Serine phosphorylation regulates the P-type potassium pump KdpFABC. ELife, 2020, 9, .                                                                                                                            | 6.0 | 16        |
| 49 | A novel role for methyl cysteinate, a cysteine derivative, in cesium accumulation in Arabidopsis<br>thaliana. Scientific Reports, 2017, 7, 43170.                                                                | 3.3 | 15        |
| 50 | Lipid Configurations from Molecular Dynamics Simulations. Biophysical Journal, 2018, 114, 1895-1907.                                                                                                             | 0.5 | 14        |
| 51 | Novel Ultrathin Membranes Composed of Organic Ions. Journal of Physical Chemistry Letters, 2013, 4, 1216-1220.                                                                                                   | 4.6 | 13        |
| 52 | K+ binding and proton redistribution in the E2P state of the H+, K+-ATPase. Scientific Reports, 2018, 8, 12732.                                                                                                  | 3.3 | 13        |
| 53 | Shuffled lipidation pattern and degree of lipidation determines the membrane interaction behavior of<br>a linear cationic membrane-active peptide. Journal of Colloid and Interface Science, 2020, 578, 584-597. | 9.4 | 13        |
| 54 | Membrane accessibility of glutathione. Biochimica Et Biophysica Acta - Biomembranes, 2015, 1848, 2430-2436.                                                                                                      | 2.6 | 12        |

HIMANSHU KHANDELIA

| #  | Article                                                                                                                                                                                      | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Cholesterol binding to the sterol-sensing region of Niemann Pick C1 protein confines dynamics of its<br>N-terminal domain. PLoS Computational Biology, 2020, 16, e1007554.                   | 3.2 | 12        |
| 56 | Conformations of double-headed, triple-tailed phospholipid oxidation lipid products in model membranes. Biochimica Et Biophysica Acta - Biomembranes, 2013, 1828, 1700-1706.                 | 2.6 | 11        |
| 57 | Structural design of intrinsically fluorescent oxysterols. Chemistry and Physics of Lipids, 2018, 212, 26-34.                                                                                | 3.2 | 11        |
| 58 | On identifying collective displacements in apo-proteins that reveal eventual binding pathways. PLoS<br>Computational Biology, 2019, 15, e1006665.                                            | 3.2 | 11        |
| 59 | Different footprints of the Zika and dengue surface proteins on viral membranes. Soft Matter, 2018, 14, 5615-5621.                                                                           | 2.7 | 10        |
| 60 | Insights into the role of cyclic ladderane lipids in bacteria from computer simulations. Chemistry and Physics of Lipids, 2014, 181, 76-82.                                                  | 3.2 | 9         |
| 61 | K+ Congeners That Do Not Compromise Na+ Activation of the Na+,K+-ATPase. Journal of Biological<br>Chemistry, 2015, 290, 3720-3731.                                                           | 3.4 | 9         |
| 62 | The name of deliciousness and the gastrophysics behind it. Flavour, 2013, 2, .                                                                                                               | 2.3 | 8         |
| 63 | Glutamate Water Gates in the Ion Binding Pocket of Na+ Bound Na+, K+-ATPase. Scientific Reports, 2017, 7, 39829.                                                                             | 3.3 | 8         |
| 64 | Evidence for ATP Interaction with Phosphatidylcholine Bilayers. Langmuir, 2019, 35, 9944-9953.                                                                                               | 3.5 | 8         |
| 65 | Structural Basis for Binding of Potassium-Competitive Acid Blockers to the Gastric Proton Pump.<br>Journal of Medicinal Chemistry, 2022, 65, 7843-7853.                                      | 6.4 | 8         |
| 66 | Tension moderation and fluctuation spectrum in simulated lipid membranes under an applied electric potential. Journal of Chemical Physics, 2013, 139, 164902.                                | 3.0 | 7         |
| 67 | Interaction of the mononucleotide UMP with a fluid phospholipid bilayer. Soft Matter, 2019, 15, 8129-8136.                                                                                   | 2.7 | 6         |
| 68 | Long chain sphingomyelin depletes cholesterol from the cytoplasmic leaflet in asymmetric lipid membranes. RSC Advances, 2021, 11, 22677-22682.                                               | 3.6 | 5         |
| 69 | Magic mushroom extracts in lipid membranes. Biochimica Et Biophysica Acta - Biomembranes, 2022,<br>1864, 183957.                                                                             | 2.6 | 5         |
| 70 | An Intracellular Pathway Controlled by the N-terminus of the Pump Subunit Inhibits the Bacterial<br>KdpFABC Ion Pump in High K+ Conditions. Journal of Molecular Biology, 2021, 433, 167008. | 4.2 | 3         |
| 71 | Thermodynamic Investigation of the Mechanism of Heat Production During Membrane Depolarization.<br>Journal of Physical Chemistry B, 2020, 124, 2815-2822.                                    | 2.6 | 1         |
| 72 | The Elusive Proton in the Gastric Proton Potassium ATPase. Biophysical Journal, 2018, 114, 146a.                                                                                             | 0.5 | 0         |

| #  | Article                                                                                                                                            | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Mechanism of Cholesterol Sensing in the Niemann Pick Protein (NPC1) using Molecular Dynamics<br>Simulations. Biophysical Journal, 2019, 116, 300a. | 0.5 | 0         |
| 74 | Title is missing!. , 2020, 16, e1007554.                                                                                                           |     | 0         |
| 75 | Title is missing!. , 2020, 16, e1007554.                                                                                                           |     | 0         |
| 76 | Title is missing!. , 2020, 16, e1007554.                                                                                                           |     | 0         |
| 77 | Title is missing!. , 2020, 16, e1007554.                                                                                                           |     | 0         |