Vimbayi Chimonyo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2352778/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Datasets for the development of hemp (Cannabis sativa L.) as a crop for the future in tropical environments (Malaysia). Data in Brief, 2022, 40, 107807.	1.0	5
2	Diversity and Diversification: Ecosystem Services Derived From Underutilized Crops and Their Co-benefits for Sustainable Agricultural Landscapes and Resilient Food Systems in Africa. Frontiers in Agronomy, 2022, 4, .	3.3	7
3	Estimation of Maize Foliar Temperature and Stomatal Conductance as Indicators of Water Stress Based on Optical and Thermal Imagery Acquired Using an Unmanned Aerial Vehicle (UAV) Platform. Drones, 2022, 6, 169.	4.9	15
4	Multi-criteria suitability analysis for neglected and underutilised crop species in South Africa. PLoS ONE, 2021, 16, e0244734.	2.5	17
5	Evaluation of Land Suitability Methods with Reference to Neglected and Underutilised Crop Species: A Scoping Review. Land, 2021, 10, 125.	2.9	44
6	Yield and water use gaps in cereal multicrop systems in sub-Saharan Africa under climate change. , 2021, , 313-329.		0
7	Investigation of the optimum planting dates for maize varieties using a hybrid approach: A case of Hwedza, Zimbabwe. Heliyon, 2021, 7, e06109.	3.2	8
8	Distribution of antioxidants in different parts of <i>Moringa oleifera</i> seedlings. Acta Horticulturae, 2021, , 157-162.	0.2	0
9	Biochemical response of Moringa oleifera to temperature. Acta Horticulturae, 2021, , 43-50.	0.2	1
10	Application of Drone Technologies in Surface Water Resources Monitoring and Assessment: A Systematic Review of Progress, Challenges, and Opportunities in the Global South. Drones, 2021, 5, 84.	4.9	41
11	Marginal more than mesic sites benefit from groundnut diversification of maize: Increased yield, protein, stability, and profits. Agriculture, Ecosystems and Environment, 2021, 320, 107585.	5.3	10
12	A framework for the development of hemp (Cannabis sativa L.) as a crop for the future in tropical environments. Industrial Crops and Products, 2021, 172, 113999.	5.2	29
13	Crop model ideotyping for agricultural diversification. MethodsX, 2021, 8, 101420.	1.6	14
14	A Comparative Estimation of Maize Leaf Water Content Using Machine Learning Techniques and Unmanned Aerial Vehicle (UAV)-Based Proximal and Remotely Sensed Data. Remote Sensing, 2021, 13, 4091.	4.0	32
15	Neglected and Underutilised Crops: A Systematic Review of Their Potential as Food and Herbal Medicinal Crops in South Africa. Frontiers in Pharmacology, 2021, 12, 809866.	3.5	17
16	Ecosystem services in doubled-up legume systems. , 2020, , 171-180.		2
17	Optimizing Traditional Cropping Systems Under Climate Change: A Case of Maize Landraces and Bambara Groundnut. Frontiers in Sustainable Food Systems, 2020, 4, .	3.9	15
18	Prospects of Improving Agricultural and Water Productivity through Unmanned Aerial Vehicles. Agriculture (Switzerland), 2020, 10, 256.	3.1	37

VIMBAYI CHIMONYO

#	Article	IF	CITATIONS
19	Multi-Spatial Resolution Satellite and sUAS Imagery for Precision Agriculture on Smallholder Farms in Malawi. Photogrammetric Engineering and Remote Sensing, 2020, 86, 107-119.	0.6	14
20	Moisture stress on physiology and yield of some indigenous leafy vegetables under field conditions. South African Journal of Botany, 2019, 126, 85-91.	2.5	7
21	Nutritional quality of selected African leafy vegetables cultivated under varying water regimes and different harvests. South African Journal of Botany, 2019, 126, 78-84.	2.5	9
22	Postharvest drying maintains phenolic, flavonoid and gallotannin content of some cultivated African leafy vegetables. Scientia Horticulturae, 2019, 255, 70-76.	3.6	10
23	Legume diversification and weed management in African cereal-based systems. Agricultural Systems, 2019, 174, 83-94.	6.1	22
24	Prospects of orphan crops in climate change. Planta, 2019, 250, 695-708.	3.2	156
25	Grain Legumes Increase Yield Stability in Maize Based Cropping Systems. Crop Science, 2019, 59, 1222-1235.	1.8	28
26	Mainstreaming Underutilized Indigenous and Traditional Crops into Food Systems: A South African Perspective. Sustainability, 2019, 11, 172.	3.2	87
27	Participatory variety selection of maize genotypes in the Eastern Cape Province of South Africa. South African Journal of Agricultural Extension, 2019, 47, .	0.5	5
28	Maize yield and profitability tradeoffs with social, human and environmental performance: Is sustainable intensification feasible?. Agricultural Systems, 2018, 162, 77-88.	6.1	67
29	Modelling climate change impact: A case of bambara groundnut (Vigna subterranea). Physics and Chemistry of the Earth, 2018, 105, 25-31.	2.9	25
30	Prospects for Improving Irrigated Agriculture in Southern Africa: Linking Water, Energy and Food. Water (Switzerland), 2018, 10, 1881.	2.7	48
31	Sorghum radiation use efficiency and biomass partitioning in intercrop systems. South African Journal of Botany, 2018, 118, 76-84.	2.5	13
32	Developing a Roadmap for Improving Neglected and Underutilized Crops: A Case Study of South Africa. Frontiers in Plant Science, 2017, 8, 2143.	3.6	83
33	Status of Underutilised Crops in South Africa: Opportunities for Developing Research Capacity. Sustainability, 2017, 9, 1569.	3.2	75
34	Assessment of sorghum–cowpea intercrop system under waterlimited conditions using a decision support tool. Water S A, 2016, 42, 316.	0.4	9
35	Simulating yield and water use of a sorghum–cowpea intercrop using APSIM. Agricultural Water Management, 2016, 177, 317-328.	5.6	40
36	Water use and productivity of a sorghum–cowpea–bottle gourd intercrop system. Agricultural Water Management, 2016, 165, 82-96.	5.6	51

#	Article	IF	CITATIONS
37	Perspective on crop modelling in the management of intercropping systems. Archives of Agronomy and Soil Science, 2015, , 1-19.	2.6	14
38	Genotype × environment interactions and yield stability of stress-tolerant open-pollinated maize varieties in the Eastern Cape province, South Africa. South African Journal of Plant and Soil, 2014, 31, 61-68.	1.1	13
39	Seed Performance of Selected Bottle Gourd (Lagenaria siceraria (Molina) Standl.). American Journal of Experimental Agriculture, 2013, 3, 740-766.	0.2	22