
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2352175/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Inflammation at the crossroads of <i>Helicobacter pylori</i> and COVID-19. Future Microbiology, 2022, 17, 77-80.	2.0	6
2	Identification of Circulating IncRNAs Associated with Gallbladder Cancer Risk by Tissue-Based Preselection, Cis-eQTL Validation, and Analysis of Association with Genotype-Based Expression. Cancers, 2022, 14, 634.	3.7	3
3	The RAGE/multiligand axis: a new actor in tumor biology. Bioscience Reports, 2022, 42, .	2.4	10
4	Gallstones, Body Mass Index, Câ€Reactive Protein, and Gallbladder Cancer: Mendelian Randomization Analysis of Chilean and European Genotype Data. Hepatology, 2021, 73, 1783-1796.	7.3	32
5	Contribution of RAGE axis activation to the association between metabolic syndrome and cancer. Molecular and Cellular Biochemistry, 2021, 476, 1555-1573.	3.1	16
6	Advanced-glycation end-products axis: A contributor to the risk of severe illness from COVID-19 in diabetes patients. World Journal of Diabetes, 2021, 12, 590-602.	3.5	10
7	Receptor for advanced glycation end-products axis and coronavirus disease 2019 in inflammatory bowel diseases: A dangerous liaison?. World Journal of Gastroenterology, 2021, 27, 2270-2280.	3.3	5
8	Dietary AGEs as Exogenous Boosters of Inflammation. Nutrients, 2021, 13, 2802.	4.1	39
9	Adipose tissue macrophages as a therapeutic target in obesityâ€associated diseases. Obesity Reviews, 2021, 22, e13200.	6.5	24
10	Pattern recognition receptors and their roles in the host response to Helicobacter pylori infection. Future Microbiology, 2021, 16, 1229-1238.	2.0	1
11	Diabetes mellitus contribution to the remodeling of the tumor microenvironment in gastric cancer. World Journal of Gastrointestinal Oncology, 2021, 13, 1997-2012.	2.0	4
12	Polyphenols and AGEs/RAGE axis. Trends and challenges. Food Research International, 2020, 129, 108843.	6.2	50
13	RID: Evaluation of the Possible Inhibiting Effect of the Proinflammatory Signaling Induced by TNF- <i>α</i> through NF- <i>κβ</i> and AP-1 in Two Cell Lines of Breast Cancer. Mediators of Inflammation, 2020, 2020, 1-8.	3.0	0
14	SARS-CoV-2-mediated inflammatory response in lungs: should we look at RAGE?. Inflammation Research, 2020, 69, 641-643.	4.0	41
15	ABCB1/4 gallbladder cancer risk variants identified in India also show strong effects in Chileans. Cancer Epidemiology, 2020, 65, 101643.	1.9	9
16	The potential role of dietary advanced glycation endproducts in the development of chronic non-infectious diseases: a narrative review. Nutrition Research Reviews, 2020, 33, 298-311.	4.1	23
17	Gastric Tumor Microenvironment. Advances in Experimental Medicine and Biology, 2020, 1226, 23-35.	1.6	51
18	Letter to the editor: Cross-contaminated cell lines: there is no time to lose. American Journal of Physiology - Cell Physiology, 2019, 317, C626-C626.	4.6	0

#	Article	IF	CITATIONS
19	Pathogenic potential of Helicobacter pylori strains can explain differences in H. pylori associated diseases rates from Chile and Cuba. Bangladesh Journal of Medical Science, 2019, 18, 577-585.	0.2	0
20	HMGB1 decreases CCR-2 expression and migration of M2 macrophages under hypoxia. Inflammation Research, 2019, 68, 639-642.	4.0	4
21	Inhibition of RAGE Axis Signaling: A Pharmacological Challenge. Current Drug Targets, 2019, 20, 340-346.	2.1	23
22	Extracellular matrix glycation and receptor for advanced glycation end-products activation: a missing piece in the puzzle of the association between diabetes and cancer. Carcinogenesis, 2018, 39, 515-521.	2.8	53
23	Cell line crossâ€contamination: a detrimental issue in current biomedical research. Cell Biology International, 2018, 42, 272-272.	3.0	5
24	Skewed Signaling through the Receptor for Advanced Glycation End-Products Alters the Proinflammatory Profile of Tumor-Associated Macrophages. Cancer Microenvironment, 2018, 11, 97-105.	3.1	13
25	Dermal Collagen Stabilization by Polyphenols and Spray Drying as an Encapsulation Strategy. Current Topics in Medicinal Chemistry, 2018, 18, 1242-1251.	2.1	2
26	Helicobacter Pylori Infection and Lung Cancer: New Insights and Future Challenges. Chinese Journal of Lung Cancer, 2018, 21, 658-662.	0.7	12
27	RAGE in Cancer Lung: the End of a Long and Winding Road is in Sight. Chinese Journal of Lung Cancer, 2018, 21, 655-657.	0.7	0
28	Tumor-associated macrophages in gastric cancer: more than bystanders in tumor microenvironment. Gastric Cancer, 2017, 20, 215-216.	5.3	9
29	The Imperative Authentication of Cell Lines. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	3
30	M2 macrophages do not fly into a "RAGEâ€: Inflammation Research, 2017, 66, 13-15.	4.0	4
31	ACE Clearance Mechanisms. , 2017, , 37-50.		2
32	Lysyl oxidase isoforms in gastric cancer. Biomarkers in Medicine, 2016, 10, 987-998.	1.4	8
33	Cross-talk between platelet and tumor microenvironment: Role of multiligand/RACE axis in platelet activation. Blood Reviews, 2016, 30, 213-221.	5.7	19
34	NF-κB signaling pathway as target for antiplatelet activity. Blood Reviews, 2016, 30, 309-315.	5.7	33
35	HMGB1 enhances the protumoral activities of M2 macrophages by a RAGE-dependent mechanism. Tumor Biology, 2016, 37, 3321-3329.	1.8	63
36	Abstract 725: HMGB1-mediated RAGE activation mechanism in M2 macrophages. , 2016, , .		2

#	Article	IF	CITATIONS
37	Dietary Advanced Glycation End Products and Their Role in Health and Disease. Advances in Nutrition, 2015, 6, 461-473.	6.4	252
38	RAGE at Tumor Microenvironment. Looking at Tumor-associated Macrophages. Chinese Journal of Lung Cancer, 2015, 18, 725-6.	0.7	0
39	Chlorogenic Acid Inhibits Human Platelet Activation and Thrombus Formation. PLoS ONE, 2014, 9, e90699.	2.5	78
40	Role of multiligand/RAGE axis in platelet activation. Thrombosis Research, 2014, 133, 308-314.	1.7	33
41	The Emerging Role of the Receptor for Advanced Glycation End Products on Innate Immunity. International Reviews of Immunology, 2014, 33, 67-80.	3.3	18
42	ls ozone pre-conditioning effect linked to Nrf2/EpRE activation pathway in vivo? A preliminary result. European Journal of Pharmacology, 2014, 742, 158-162.	3.5	68
43	The receptor for advanced glycation end-products: A complex signaling scenario for a promiscuous receptor. Cellular Signalling, 2013, 25, 609-614.	3.6	77
44	The immunobiology of the receptor of advanced glycation end-products: Trends and challenges. Immunobiology, 2013, 218, 790-797.	1.9	48
45	Statins and Portal Hypertension: A New Pharmacological Challenge. Current Vascular Pharmacology, 2012, 10, 767-772.	1.7	10
46	iNOS Activation Regulates β-catenin Association with Its Partners in Endothelial Cells. PLoS ONE, 2012, 7, e52964.	2.5	9
47	High prevalence of virulence-associated genotypes in Helicobacter pylori clinical isolates in the Region del Maule, Chile. Scandinavian Journal of Infectious Diseases, 2011, 43, 652-655.	1.5	9
48	Identity Crisis – Bladder cells in vascular biology. Toxicology in Vitro, 2011, 25, 999.	2.4	1
49	Diabetes and cancer: Looking at the multiligand/RAGE axis. World Journal of Diabetes, 2011, 2, 108.	3.5	43
50	EL CONSUMO DE FRUTAS Y HORTALIZAS AYUDA A PREVENIR EL DAÑO ENDOTELIAL. Revista Chilena De Nutricion, 2011, 38, 343-355.	0.3	2
51	Evidence of involvement of the receptor for advanced glycation end-products (RAGE) in the adhesion of Helicobacter pylori to gastric epithelial cells. Microbes and Infection, 2011, 13, 818-823.	1.9	24
52	Comment on "Endothelial ICAM-1 Protein Induction Is Regulated by Cytosolic Phospholipase A2α via Both NF-κB and CREB Transcription Factors― Journal of Immunology, 2011, 187, 2041.1-2041.	0.8	0
53	Cell Line Cross-contamination: Who Wins?. Journal of Biological Chemistry, 2011, 286, le20.	3.4	1
54	Fueling inflammation at tumor microenvironment: the role of multiligand/rage axis. Carcinogenesis, 2010, 31, 334-341.	2.8	136

#	Article	IF	CITATIONS
55	Calling attention to the use of false "endothelial―cell lines. Fertility and Sterility, 2010, 93, e33.	1.0	Ο
56	Modulation of Nitric Oxide Pathway by Multiligands/RAGE Axis: A Crossing Point on the Road to Microvascular Complication in Diabetes. Current Enzyme Inhibition, 2010, 6, 34-45.	0.4	3
57	Pathophysiology of the proatherothrombotic state in the metabolic syndrome. Frontiers in Bioscience - Scholar, 2010, S2, 194-208.	2.1	21
58	Stopping the use of false "endothelial―cell lines. International Immunopharmacology, 2009, 9, 258.	3.8	1
59	Cell line cross-contamination in biomedical research: a call to prevent unawareness. Acta Pharmacologica Sinica, 2008, 29, 877-880.	6.1	19
60	Letter To The Editor. European Journal of Neurology, 2008, 15, e8.	3.3	2
61	Advanced Glycation and ROS: A Link between Diabetes and Heart Failure. Current Vascular Pharmacology, 2008, 6, 44-51.	1.7	48
62	Oxidative stress in tumor microenvironmentIts role in angiogenesis. Chinese Journal of Lung Cancer, 2008, 11, 297-305.	0.7	2
63	An insight into the pathophysiology of thrombosis in antiphospholipid syndrome. Frontiers in Bioscience - Landmark, 2007, 12, 3093.	3.0	14
64	Oxidative Stress at the Vascular Wall. Mechanistic and Pharmacological Aspects. Archives of Medical Research, 2006, 37, 436-448.	3.3	40
65	Facing Up the ROS Labyrinth - Where To Go?. Current Vascular Pharmacology, 2006, 4, 277-289.	1.7	17
66	The influence of cellular seeding density in the microencapsulation of hybridoma cells. Journal of Biomaterials Science, Polymer Edition, 2005, 16, 521-529.	3.5	5
67	Nitric oxide, an iceberg in cardiovascular physiology:. Archives of Medical Research, 2004, 35, 1-11.	3.3	40
68	Advanced glycation and endothelial functions: A link towards vascular complications in diabetes. Life Sciences, 2004, 76, 715-730.	4.3	111
69	Nitric oxide disrupts VE-cadherin complex in murine microvascular endothelial cells. Biochemical and Biophysical Research Communications, 2003, 304, 113-118.	2.1	22
70	Albumin-derived advanced glycation end-products trigger the disruption of the vascular endothelial cadherin complex in cultured human and murine endothelial cells. Biochemical Journal, 2001, 359, 567.	3.7	41
71	Albumin-derived advanced glycation end-products trigger the disruption of the vascular endothelial cadherin complex in cultured human and murine endothelial cells. Biochemical Journal, 2001, 359, 567-574.	3.7	55
72	Microencapsulation of an antiâ€VE–cadherin antibody secreting 1B5 hybridoma cells. Biotechnology and Bioengineering, 2001, 76, 285-294.	3.3	38

#	Article	IF	CITATIONS
73	Differential Interleukin-8 Response of Intestinal Epithelial Cell Line to Reactogenic and Nonreactogenic Candidate Vaccine Strains of Vibrio cholerae. Infection and Immunity, 2001, 69, 613-616.	2.2	34
74	Effects of Phycocyanin Extract on Tumor Necrosis Factor-α and Nitrite Levels in Serum of Mice Treated with Endotoxin. Arzneimittelforschung, 2001, 51, 733-736.	0.4	38
75	Regulation of Endothelial Nitric Oxide Synthase Expression by Albumin-Derived Advanced Glycosylation End Products. Circulation Research, 2000, 86, E50-4.	4.5	98
76	Heparin and Low Molecular Weight Heparin Decrease Nitric Oxide Production by Human Polymorphonuclear Cells. Archives of Medical Research, 1999, 30, 116-119.	3.3	12
77	Cholera toxin differentially regulates nitric oxide synthesis, tumor necrosis factor-α production and respiratory burst in murine macrophages. FEMS Immunology and Medical Microbiology, 1998, 22, 193-198.	2.7	1
78	Effect of Advanced Glycosylation End Products on the Induction of Nitric Oxide Synthase in Murine Macrophages. Biochemical and Biophysical Research Communications, 1996, 225, 358-362.	2.1	39
79	Nitric oxide modulates interleukin-2-induced proliferation in CTLL-2 cells. Mediators of Inflammation, 1996, 5, 324-327.	3.0	3
80	Lobenzarit disodium inhibits the constitutive NO–cGMP metabolic pathways. Possible involvement as an immunomodulatory drug. Mediators of Inflammation, 1995, 4, 364-367.	3.0	0
81	Ca(2+)-independent nitric oxide synthase activity in human lung after cardiopulmonary bypass Thorax, 1995, 50, 403-404.	5.6	24
82	Activation of phospholipase D by interleukin-8 in human neutrophils. Blood, 1994, 84, 3895-3901.	1.4	40
83	Increases in chromosome aberrations and in abnormal sperm morphology in rubber factory workers. Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis, 1994, 323, 151-157.	1.1	15
84	Role of Nitric Oxide Pathway in the Protection Against Lethal Endotoxemia Afforded by Low Doses of Lipopolysaccharide. Biochemical and Biophysical Research Communications, 1993, 191, 441-446.	2.1	42
85	Monocyte Chemotactic Protein-1 Inhibits the Induction of Nitric Oxide Synthase in J774 Cells. Biochemical and Biophysical Research Communications, 1993, 196, 274-279.	2.1	29
86	Chlorpromazine Inhibits Both the Constitutive Nitric Oxide Synthase and the Induction of Nitric Oxide Synthase After LPS Challenge. Biochemical and Biophysical Research Communications, 1993, 196, 280-286.	2.1	35
87	Generation of Murine Triomas Secreting Bi-specific Monoclonal Antibodies That Recognize HBsAG <i>ad</i> and <i>ay</i> Subtypes. Hybridoma, 1992, 11, 815-823.	0.6	2
88	Competitive enzyme inhibition immunoassay of apolipoprotein B based on monoclonal antibody. Clinica Chimica Acta, 1992, 205, 245-247.	1.1	0
89	No increase in chromosome aberrations in lymphocytes from workers exposed to nitrogen fertilisers. Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis, 1992, 281, 133-135.	1.1	6
90	No increase in chromosome aberrations in workers from an oil catalytic cracking plant. Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis, 1992, 282, 209-212.	1.1	4