K M Jadhav

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2352021/publications.pdf

Version: 2024-02-01

211 8,264 papers citations

53 h-index 80 g-index

213 all docs 213 docs citations

213 times ranked 4244 citing authors

#	Article	IF	CITATIONS
1	Structural investigations and magnetic properties of cobalt ferrite nanoparticles prepared by sol–gel auto combustion method. Solid State Communications, 2008, 147, 479-483.	0.9	225
2	Structural and magnetic properties of In3+ substituted NiFe2O4. Materials Chemistry and Physics, 2009, 117, 163-168.	2.0	214
3	Influential diamagnetic magnesium (Mg2+) ion substitution in nano-spinel zinc ferrite (ZnFe2O4): Thermal, structural, spectral, optical and physisorption analysis. Ceramics International, 2020, 46, 8640-8650.	2.3	205
4	Effect of Zn substitution on magnetic properties of nanocrystalline cobalt ferrite. Journal of Applied Physics, 2010, 108, .	1.1	158
5	Synthesis, structural investigation and magnetic properties of Zn2+ substituted cobalt ferrite nanoparticles prepared by the sol–gel auto-combustion technique. Journal of Magnetism and Magnetic Materials, 2014, 358-359, 87-92.	1.0	158
6	Effect of zinc substitution on structural and elastic properties of cobalt ferrite. Journal of Alloys and Compounds, 2009, 488, 199-203.	2.8	150
7	Rietveld structure refinement, cation distribution and magnetic properties of Al3+ substituted NiFe2O4 nanoparticles. Journal of Applied Physics, 2011, 109, .	1.1	141
8	Hydrophobic to hydrophilic surface transformation of nano-scale zinc ferrite via oleic acid coating: Magnetic hyperthermia study towards biomedical applications. Ceramics International, 2020, 46, 7642-7653.	2.3	137
9	Hyperthermic evaluation of oleic acid coated nano-spinel magnesium ferrite: Enhancement via hydrophobic-to-hydrophilic surface transformation. Journal of Alloys and Compounds, 2020, 835, 155422.	2.8	133
10	Self-heating evaluation of superparamagnetic MnFe2O4 nanoparticles for magnetic fluid hyperthermia application towards cancer treatment. Ceramics International, 2020, 46, 25576-25583.	2.3	132
11	Electrical and magnetic properties of Cr3+ substituted nanocrystalline nickel ferrite. Journal of Applied Physics, 2009, 106, .	1.1	130
12	Effect of Zn doping on structural, magnetic and optical properties of cobalt ferrite nanoparticles synthesized via. Co-precipitation method. Physica B: Condensed Matter, 2020, 583, 412051.	1.3	129
13	Structural, thermal, spectral, optical and surface analysis of rare earth metal ion (Gd3+) doped mixed Zn–Mg nano-spinel ferrites. Ceramics International, 2020, 46, 13170-13179.	2.3	126
14	Structural and magnetic behaviour of aluminium doped barium hexaferrite nanoparticles synthesized by solution combustion technique. Physica B: Condensed Matter, 2011, 406, 789-793.	1.3	124
15	Induction Heating Analysis of Surface-Functionalized Nanoscale CoFe ₂ O ₄ for Magnetic Fluid Hyperthermia toward Noninvasive Cancer Treatment. ACS Omega, 2020, 5, 23378-23384.	1.6	123
16	Autocombustion High-Temperature Synthesis, Structural, and Magnetic Properties of CoCr _{<i>x</i>} Fe _{2â€"<i>x</i>} O ₄ (0 ≤i>x ≤.0). Journal of Physical Chemistry C, 2011, 115, 20905-20912.	1.5	119
17	Influence of trivalent Al–Cr co-substitution on the structural, morphological and Mössbauer properties of nickel ferrite nanoparticles. Journal of Alloys and Compounds, 2020, 821, 153501.	2.8	119
18	Synthesis and magnetic properties of NiFe2â°'xAlxO4 nanoparticles. Journal of Magnetism and Magnetic Materials, 2007, 316, 1-7.	1.0	116

#	Article	IF	CITATIONS
19	Surface modified sodium silicate based superhydrophobic silica aerogels prepared via ambient pressure drying process. Journal of Non-Crystalline Solids, 2019, 511, 140-146.	1.5	114
20	Spinel zinc ferrite nanoparticles: an active nanocatalyst for microwave irradiated solvent free synthesis of chalcones. Materials Research Express, 2020, 7, 016116.	0.8	112
21	Electrical and switching properties of NiAlxFe2â^'xO4 ferrites synthesized by chemical method. Physica B: Condensed Matter, 2011, 406, 663-668.	1.3	102
22	Influence of Ce4+ ions on the structural and magnetic properties of NiFe2O4. Journal of Applied Physics, 2011, 110, .	1.1	101
23	Cation distribution, magnetic and hyperfine interaction studies of Ni–Zn spinel ferrites: role of Jahn Teller ion (Cu ²⁺) substitution. Materials Advances, 2020, 1, 880-890.	2.6	95
24	Magnetic and dielectric properties of nanophase manganese-substituted lithium ferrite. Journal of Magnetism and Magnetic Materials, 2009, 321, 3270-3273.	1.0	94
25	Elastic properties of nanocrystalline aluminum substituted nickel ferrites prepared by co-precipitation method. Journal of Molecular Structure, 2013, 1038, 40-44.	1.8	94
26	Network structure analysis of modifier CdO doped sodium borate glass using FTIR and Raman spectroscopy. Journal of Non-Crystalline Solids, 2017, 474, 58-65.	1.5	93
27	Structural and optical properties of nanocrystalline Ni–Zn ferrite thin films. Journal of Alloys and Compounds, 2010, 507, 21-25.	2.8	92
28	Effect of aluminum substitution on the structural and magnetic properties of cobalt ferrite synthesized by sol–gel auto combustion process. Physica B: Condensed Matter, 2011, 406, 4350-4354.	1.3	90
29	Sol-gel auto combustion synthesis and characterizations of cobalt ferrite nanoparticles: Different fuels approach. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2019, 248, 114388.	1.7	85
30	Cation distribution by Rietveld, spectral and magnetic studies ofÂchromium-substituted nickel ferrites. Applied Physics A: Materials Science and Processing, 2009, 95, 429-434.	1.1	84
31	Magneto-structural and photocatalytic behavior of mixed Ni–Zn nano-spinel ferrites: visible light-enabled active photodegradation of rhodamine B. Journal of Materials Science: Materials in Electronics, 2020, 31, 11352-11365.	1.1	84
32	Influential incorporation of RE metal ion (Dy3+) in yttrium iron garnet (YIG) nanoparticles: Magnetic, electrical and dielectric behaviour. Ceramics International, 2020, 46, 15372-15378.	2.3	84
33	Chemical synthesis, structural and magnetic properties of nano-structured Co–Zn–Fe–Cr ferrite. Journal of Alloys and Compounds, 2011, 509, 5055-5060.	2.8	81
34	Magnetic study of substituted Mg–Mn ferrites synthesized by citrate precursor method. Journal of Magnetism and Magnetic Materials, 2004, 283, 71-81.	1.0	80
35	Dielectric properties of Al-substituted Co ferrite nanoparticles. Bulletin of Materials Science, 2009, 32, 575-578.	0.8	80
36	Structural studies of Mn doped ZnO nanoparticles. Current Applied Physics, 2011, 11, 762-766.	1.1	78

#	Article	IF	Citations
37	Multiferroic iron doped BaTiO3 nanoceramics synthesized by sol-gel auto combustion: Influence of iron on physical properties. Ceramics International, 2016, 42, 12441-12451.	2.3	78
38	X-Ray Diffraction and Cation Distribution Studies in Zinc-Substituted Nickel Ferrite Nanoparticles. Journal of Superconductivity and Novel Magnetism, 2014, 27, 547-553.	0.8	77
39	Impact of Jahn Teller ion on magnetic and semiconducting behaviour of Ni-Zn spinel ferrite synthesized by nitrate-citrate route. Journal of Alloys and Compounds, 2017, 691, 343-354.	2.8	74
40	Structure refinement, cation site location, spectral and elastic properties of Zn2+ substituted NiFe2O4. Journal of Molecular Structure, 2012, 1024, 77-83.	1.8	70
41	Effect of Nd3+ doping on structural and magnetic properties of Ni0.5Co0.5Fe2O4 nanocrystalline ferrites synthesized by sol-gel auto combustion method. Journal of Alloys and Compounds, 2018, 748, 1053-1061.	2.8	70
42	Investigation of structural and magnetic properties of nanocrystalline manganese substituted lithium ferrites. Journal of Solid State Chemistry, 2009, 182, 3217-3221.	1.4	69
43	Exploration of thermoacoustics behavior of water based nickel ferrite nanofluids by ultrasonic velocity method. Journal of Materials Science: Materials in Electronics, 2019, 30, 6564-6574.	1.1	67
44	Effect of Cation Proportion on the Structural and Magnetic Properties of Ni-Zn Ferrites Nano-Size Particles Prepared By Co-Precipitation Technique. Chinese Journal of Chemical Physics, 2008, 21, 381-386.	0.6	64
45	Influence of chromium substitution on structural and magnetic properties of BaFe12O19 powder prepared by sol–gel auto combustion method. Journal of Alloys and Compounds, 2011, 509, 4394-4398.	2.8	64
46	Structural, magnetic and dielectrical properties of Al–Cr Co-substituted M-type barium hexaferrite nanoparticles. Journal of Molecular Structure, 2016, 1106, 460-467.	1.8	63
47	Infrared spectral and elastic moduli study of NiFe2â°'xCrxO4 nanocrystalline ferrites. Journal of Magnetism and Magnetic Materials, 2013, 325, 107-111.	1.0	62
48	Magnetically retrievable nanoscale nickel ferrites: An active photocatalyst for toxic dye removal applications. Ceramics International, 2021, 47, 28623-28633.	2.3	60
49	Rietveld refinement, morphology and superparamagnetism of nanocrystalline Ni0.70â^'xCuxZn0.30Fe2O4 spinel ferrite. Ceramics International, 2018, 44, 5466-5472.	2.3	59
50	Enhancement in surface area and magnetization of CoFe2O4 nanoparticles for targeted drug delivery application. AIP Conference Proceedings, 2018, , .	0.3	59
51	Rietveld refinement and switching properties of Cr3+ substituted NiFe2O4 ferrites. Materials Letters, 2010, 64, 722-724.	1.3	57
52	X-ray and infrared studies of chromium substituted magnesium ferrite. Materials Letters, 2000, 42, 33-37.	1.3	55
53	Gamma irradiation induced damage creation on the cation distribution, structural and magnetic properties in Ni–Zn ferrite. Nuclear Instruments & Methods in Physics Research B, 2010, 268, 2706-2711.	0.6	55
54	Dielectric relaxation and ac conductivity of polyaniline–zinc ferrite composite. Composites Part B: Engineering, 2012, 43, 3406-3411.	5.9	54

#	Article	IF	CITATIONS
55	Cation distribution in nanocrystalline Al3+ and Cr3+ co-substituted CoFe2O4. Journal of Alloys and Compounds, 2010, 502, 477-479.	2.8	53
56	Temperature dependent viscosity of cobalt ferrite $\!\!\!/$ ethylene glycol ferrofluids. AIP Conference Proceedings, 2018, , .	0.3	52
57	Effect of Cd2+ doping on structural, morphological, optical, magnetic and wettability properties of nickel ferrite thin films. Optik, 2020, 207, 164462.	1.4	52
58	Remarkable influence of Ce4+ ions on the electronic conduction of Ni1â^2xCexFe2O4. Scripta Materialia, 2011, 64, 773-776.	2.6	51
59	Electrical and Dielectrical Properties of Low-Temperature-Synthesized Nanocrystalline Mg2+-Substituted Cobalt Spinel Ferrite. Journal of Superconductivity and Novel Magnetism, 2015, 28, 3351-3356.	0.8	51
60	Investigations of structural, magnetic and induction heating properties of surface functionalized zinc ferrite nanoparticles for hyperthermia applications. AIP Conference Proceedings, 2019, , .	0.3	51
61	Tuning of physical properties of multifunctional Mg-Zn spinel ferrite nanocrystals: a comparative investigations manufactured via conventional ceramic versus green approach sol-gel combustion route. Materials Research Express, 2020, 7, 116102.	0.8	51
62	Magnetic and dielectric properties of Mg1+x Mnx, Fe2?2x, O4 ferrite system. Journal of Materials Science, 2005, 40, 423-428.	1.7	50
63	Structural and magnetic properties of aluminium and chromium co-substituted cobalt ferrite. Materials Letters, 2000, 44, 91-95.	1.3	49
64	Microfluidic paper-based aptasensor devices for multiplexed detection of pathogenic bacteria. Biosensors and Bioelectronics, 2022, 207, 114214.	5.3	49
65	Structural and electric properties of zinc substituted NiFe2O4 nanoparticles prepared by co-precipitation method. Physica B: Condensed Matter, 2010, 405, 2610-2614.	1.3	48
66	Urea assisted synthesis of Ni1â^'xZnxFe2O4 (0Â≤xÂ≤0.8): Magnetic and Mössbauer investigations. Journ of Alloys and Compounds, 2017, 704, 227-236.	nal 2.8	48
67	Deposition, characterization, magnetic and optical properties of Zn doped CuFe2O4 thin films. Journal of Alloys and Compounds, 2017, 695, 1573-1582.	2.8	48
68	Different property studies with network improvement of CdO doped alkali borate glass. Journal of Non-Crystalline Solids, 2018, 491, 14-23.	1.5	48
69	Structural, morphological, optical, magnetic and electrical properties of Al3+ substituted nickel ferrite thin films. Journal of Alloys and Compounds, 2018, 735, 2287-2297.	2.8	46
70	Superparamagnetic Behavior of Zinc-Substituted Nickel Ferrite Nanoparticles and its Effect on Mossbauer and Magnetic Parameters. Journal of Superconductivity and Novel Magnetism, 2014, 27, 1889-1897.	0.8	43
71	X-ray diffraction and dielectric study of Co1â^'xCdxFe2â^'xCrxO4 ferrite system. Materials Letters, 2002, 56, 188-193.	1.3	41
72	Effect of Co 2+ ions on structural, morphological and optical properties of ZnO nanoparticles synthesized by sol–gel auto combustion method. Materials Science in Semiconductor Processing, 2016, 41, 441-449.	1.9	41

#	Article	IF	CITATIONS
73	Electrical resistivity and Mössbauer studies of Cr substituted Co nano ferrites. Journal of Alloys and Compounds, 2017, 694, 366-374.	2.8	41
74	Structural and magnetic properties of Co1+ySnyFe2-2y-xCrxO4 ferrite system. Bulletin of Materials Science, 2003, 26, 517-521.	0.8	40
7 5	STRUCTURAL PROPERTIES AND CATION DISTRIBUTION OF Co â€" Zn NANOFERRITES. International Journal of Modern Physics B, 2009, 23, 5629-5638.	1.0	40
76	Effect of gamma irradiation on the structural and magnetic properties of Coâ€"Zn spinel ferrite nanoparticles. Materials Research Bulletin, 2015, 63, 123-128.	2.7	40
77	Influence of trivalent Cr ion substitution on the physicochemical, optical, electrical, and dielectric properties of sprayed NiFe ₂ O ₄ spinel-magnetic thin films. RSC Advances, 2020, 10, 25143-25154.	1.7	40
78	Elastic behaviour of Cr3+ substituted Co–Zn ferrites. Journal of Magnetism and Magnetic Materials, 2014, 350, 39-41.	1.0	39
79	Impact of crystallites on enhancement of bandgap of Mn1-xZnxFe2O4 (1Â≥ÂxÂ≥Â0) nanospinels. Chemica Physics Letters, 2020, 745, 137240.	al 1.2	39
80	Magnetic and electrical properties of aluminium and chromium co-substituted yttrium iron garnets. Materials Letters, 1997, 32, 281-285.	1.3	38
81	Frequency, temperature and In3+ dependent electrical conduction in NiFe2O4 powder. Powder Technology, 2011, 212, 218-223.	2.1	37
82	Cu2+substituted NiFe2O4 thin films via spray pyrolysis technique and their high-frequency devices application. Journal of Alloys and Compounds, 2018, 769, 1132-1145.	2.8	37
83	Structural and magnetic properties of ZnxCul.4â^'xMn0.4Fel.2O4 ferrites. Materials Letters, 2005, 59, 2981-2985.	1.3	36
84	Low temperature LPG sensing properties of wet chemically grown zinc oxide nanoparticle thin film. Sensors and Actuators B: Chemical, 2010, 146, 69-74.	4.0	34
85	Eco-friendly green synthesis and characterizations of CoFe2-x AlxO4 nanocrystals: analysis of structural, magnetic, electrical, and dielectric properties. Journal of Nanostructure in Chemistry, 2021, 11, 469-481.	5.3	34
86	Preparation and characterization of Co2+ substituted Li–Dy ferrite ceramics. Ceramics International, 2013, 39, 5227-5234.	2.3	33
87	Effect of Annealing Temperature on Structural, Morphological, Optical and Magnetic Properties of NiFe2O4 Thin Films. Journal of Superconductivity and Novel Magnetism, 2018, 31, 2949-2958.	0.8	33
88	Structural, infrared, magnetic and ferroelectric properties of SrO·5BaO·5Ti1-xFexO3 nanoceramics: Modifications via trivalent Fe ion doping. Physica B: Condensed Matter, 2020, 581, 411944.	1.3	32
89	Modifications in structural, cation distribution and magnetic properties of 60Co gamma irradiated Li-ferrite. Nuclear Instruments & Methods in Physics Research B, 2011, 269, 2026-2031.	0.6	31
90	Synthesis, structural, morphological, optical and magnetic properties of Zn1â^'Co O (0Ââ%ÂxÂâ%Â0.36) nanoparticles synthesized by sol-gel auto combustion method. Journal of Alloys and Compounds, 2016, 683, 513-526.	2.8	31

#	Article	IF	CITATIONS
91	Surface Functionalized Superparamagnetic Znâ€Mg Ferrite Nanoparticles for Magnetic Hyperthermia Application Towards Noninvasive Cancer Treatment. Macromolecular Symposia, 2021, 400, .	0.4	31
92	Effect of $100 \text{ÅkGy} \hat{\text{J}}^3$ -irradiation on the structural, electrical and magnetic properties of CoFe2O4 NPs. Journal of Alloys and Compounds, 2016, 676, 326-336.	2.8	30
93	Inter-atomic bonding and dielectric polarization in Gd3+ incorporated Co-Zn ferrite nanoparticles. Physica B: Condensed Matter, 2017, 510, 74-79.	1.3	30
94	Sol-gel Auto Combustion Synthesis, Structural and Magnetic Properties of Mn doped ZnO Nanoparticles. Procedia Manufacturing, 2018, 20, 174-180.	1.9	28
95	Structural, Electrical, Dielectric, and Magnetic Properties of Cd ²⁺ Substituted Nickel Ferrite Nanoparticles. Journal of Nanoparticles, 2016, 2016, 1-8.	1.4	27
96	Structural, Electrical and Dielectrical Property Investigations of Fe-Doped BaZrO3 Nanoceramics. Journal of Electronic Materials, 2016, 45, 3227-3235.	1.0	27
97	Electrical and dielectric properties of silicon substituted cobalt ferrites. Materials Letters, 1998, 37, 63-67.	1.3	26
98	Influence of Mg2+ substitution on magnetic properties of Coâ€"Feâ€"Crâ€"O spinel ferrite system. Journal of Magnetism and Magnetic Materials, 1999, 195, 692-698.	1.0	26
99	X-ray, IR and bulk magnetic properties of Cu1 + x Mn x Fe2–2x O4 ferrite system. Journal of Materials Science, 2002, 37, 1443-1448.	1.7	26
100	Effects of Nd:YAG laser irradiation on structural and magnetic properties of Li0.5Fe2.5O4. Nuclear Instruments & Methods in Physics Research B, 2011, 269, 466-471.	0.6	26
101	Effect of magnesium substitution on the structural, morphological, optical and wettability properties of cobalt ferrite thin films. Physica B: Condensed Matter, 2019, 555, 61-68.	1.3	26
102	Effect of Fe â€" substitution on phase transformation, optical, electrical and dielectrical properties of BaTiO3 nanoceramics synthesized by sol-gel auto combustion method. Journal of Electroceramics, 2016, 37, 110-120.	0.8	25
103	Room temperature ferromagnetism and photoluminescence of multifunctional Fe doped BaZrO3 nanoceramics. Journal of Alloys and Compounds, 2017, 691, 287-298.	2.8	25
104	Effect of Sm3+ substitution on the structural and magnetic properties of Ni-Co nanoferrites. Optics and Laser Technology, 2019, 112, 107-116.	2.2	25
105	Physicochemical properties of ambient pressure dried surface modified silica aerogels: effect of pH variation. SN Applied Sciences, 2020, 2, 1 .	1.5	25
106	Auto-ignition synthesis of CoFe2O4 with Al3+ substitution for high frequency applications. Ceramics International, 2017, 43, 14347-14353.	2.3	24
107	Synthesis, structural, electrical and dielectric properties of Zn–Zr doped strontium hexaferrite nanoparticles. Journal of Materials Science: Materials in Electronics, 2013, 24, 3101-3107.	1.1	23
108	Effects of Nd:YAG laser irradiation on structural, morphological, cation distribution and magnetic properties of nanocrystalline CoFe2O4. Applied Surface Science, 2011, 257, 8511-8517.	3.1	22

#	Article	IF	CITATIONS
109	Multifunctional Magnetic Nano-platforms for Advanced Biomedical applications: A Brief Review. Journal of Physics: Conference Series, 2020, 1644, 012036.	0.3	22
110	Bulk Magnetic Properties of Cobalt Ferrite Doped with Si4+ Ions. Journal of Materials Science Letters, 1998, 17, 849-851.	0.5	21
111	Nanocrystalline Ni0.70â^'xCuxZn0.30Fe2O4 with O â‰â€‰x â‰â€‰0.25 prepared by nitrate-citrate morphology and electrical investigations. Journal of Materials Science: Materials in Electronics, 2018, 29, 3467-3481.	route: stri	ucture, 21
112	Structural, magnetization and susceptibility studies on cobalt–ferri-aluminates synthesized by wet-chemical method. Physica B: Condensed Matter, 2000, 291, 379-386.	1.3	20
113	Rietveld, cation distribution and elastic investigations of nanocrystalline Li0.5+0.5xZrxFe2.5-1.5xO4 synthesized via sol-gel route. Physica B: Condensed Matter, 2018, 547, 64-71.	1.3	20
114	Structural, Microstructural, Magnetic, and Ferroelectric Properties of Ba 2 + -Doped BiFeO3 Nanocrystalline Multifferroic Material. Journal of Superconductivity and Novel Magnetism, 2018, 31, 2501-2509.	0.8	19
115	Effect of zinc doping on water-based manganese ferrite nanofluids for magnetic hyperthermia application. AIP Conference Proceedings, 2020, , .	0.3	19
116	Presence of intrinsic defects and transition from diamagnetic to ferromagnetic state in Co2+ ions doped ZnO nanoparticles. Journal of Materials Science: Materials in Electronics, 2016, 27, 5575-5583.	1.1	18
117	Effect of Zn2+–Cr3+ substitution on structural, morphological, magnetic and electrical properties of NiFe2O4 ferrite nanoparticles. Journal of Materials Science: Materials in Electronics, 2018, 29, 15259-15270.	1.1	18
118	Magnetic and electrical properties of lanthanum substituted yttrium iron garnets. Journal of Materials Science, 2006, 41, 6460-6464.	1.7	17
119	Mössbauer spectral studies of Ti4+ substituted nickel ferrite. Journal of Magnetism and Magnetic Materials, 2013, 331, 220-224.	1.0	17
120	Structural, Microstructural, and Magnetic Studies on Magnesium (Mg2+)-Substituted CoFe2O4 Nanoparticles. Journal of Superconductivity and Novel Magnetism, 2016, 29, 1025-1032.	0.8	17
121	Influence of Ti4+ ion substitution on structural, electrical and dielectric properties of Li0.5Fe2.5O4 nanoparticles. Journal of Materials Science: Materials in Electronics, 2017, 28, 17254-17261.	1.1	17
122	Influence of Alâ \in "Cr co-substitution on physical properties of strontium hexaferrite nanoparticles synthesized by solâ \in "gel auto combustion method. Journal of Materials Science: Materials in Electronics, 2017, 28, 407-417.	1.1	17
123	Sol-gel auto combustion synthesis, electrical and dielectric properties of Zn1â^3xCoxO (0.0Ââ%ÂxÂâ%Â0.36) semiconductor nanoparticles. Journal of Alloys and Compounds, 2017, 691, 355-363.	2.8	17
124	Rietveld refined structural, morphological, Raman and magnetic investigations of superparamagnetic Zn–Co nanospinel ferrites prepared by cost-effective co-precipitation route. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	1.1	17
125	Investigations of magnetic and ferroelectric properties of multiferroic Sr-doped bismuth ferrite. Applied Physics A: Materials Science and Processing, 2018, 124, 1.	1.1	16
126	Preparation and Thermophysical Investigations of CoFe2O4-based Nanofluid: a Potential Heat Transfer Agent. Journal of Superconductivity and Novel Magnetism, 2019, 32, 341-351.	0.8	16

#	Article	IF	Citations
127	Impact of trivalent metal ion substitution on structural, optical, magnetic and dielectric properties of Li0.5Fe2.5O4 thin films. Physica B: Condensed Matter, 2019, 566, 43-49.	1.3	16
128	Effect of Al doping on the cation distribution in copper ferrite nanoparticles and their structural and magnetic properties. Journal of the Korean Physical Society, 2012, 61, 568-574.	0.3	15
129	Synthesis and characterization of water based NiFe2O4 ferrofluid. AIP Conference Proceedings, 2017, ,	0.3	15
130	Structural, magnetic and catalytical properties of cobalt ferrite nanoparticles dispersed in silica matrix. Materials Research Express, 2019, 6, 045055.	0.8	15
131	Influence of nickel substitution on flux pinning and critical currents in YBa2Cu3O7â^Î. Cryogenics, 1991, 31, 833-838.	0.9	14
132	Magnetic properties of the mixed spinel Co1+x Si x Fe2 \hat{a}^2 2x O4. Bulletin of Materials Science, 1998, 21, 409-413.	0.8	14
133	Influence of Cr3+ substitution on structural, morphological, optical, and magnetic properties of nickel ferrite thin films. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	1.1	14
134	Measurement of atomic number and mass attenuation coefficient in magnesium ferrite. Pramana - Journal of Physics, 2007, 68, 869-874.	0.9	13
135	Influence of Nd:YAG laser irradiation on AC impedance and dielectric properties of lithium ferrite. Radiation Effects and Defects in Solids, 2011, 166, 435-444.	0.4	13
136	Structural and magnetic properties of zinc- and aluminum-substituted cobalt ferrite prepared by co-precipitation method. Pramana - Journal of Physics, 2008, 70, 173-181.	0.9	12
137	Nd:YAG laser irradiation effects on the structural and magnetic properties of polycrystalline cobalt ferrite. Journal of Molecular Structure, 2013, 1035, 27-30.	1.8	12
138	Investigations on the synthesis, structural and microstructural characterizations of $Ba < sub > 1 - < i > < sub > x Sr < i > < sub > x ZrO < sub > 3 nanoceramics. Ferroelectrics, 2016, 504, 216-229.$	0.3	12
139	l-Ascorbic acid assisted synthesis and characterization of CoFe2O4 nanoparticles at different annealing temperatures. Journal of Materials Science: Materials in Electronics, 2016, 27, 2151-2158.	1.1	12
140	Structural and magnetic characterization of 100-kGy Co60 γ-ray-irradiated ZnFe2O4 NPs by XRD, W–H plot and ESR. Journal of Sol-Gel Science and Technology, 2016, 79, 1-11.	1.1	12
141	Radiation-induced modifications in structural, electrical and dielectric properties of Ti4+ ions substituted Li0.5Fe2.5O4 nanoparticles. Journal of Materials Science: Materials in Electronics, 2018, 29, 8601-8609.	1.1	12
142	Effect of γ-radiation on structural, morphological, magnetic and dielectric properties of Zn–Cr substituted nickel ferrite nanoparticles. Journal of Materials Science: Materials in Electronics, 2019, 30, 56-68.	1.1	12
143	Enhancement of Electrical Resistivity in Nickel Doped ZnO Nanoparticles. Procedia Manufacturing, 2018, 20, 477-480.	1.9	10
144	Thermophysical Investigations of Ultrasonically Assisted Magnetic Nanofluids for Heat Transfer. Journal of Superconductivity and Novel Magnetism, 2019, 32, 1307-1317.	0.8	10

#	Article	IF	Citations
145	X-ray Diffraction, Infrared and Magnetic Studies of NiFe ₂ O ₄ Nanoparticles. Journal of Physics: Conference Series, 2020, 1644, 012010.	0.3	10
146	Wet chemical synthesis and investigations of structural and dielectric properties of BaTiO3 nanoparticles. Journal of Physics: Conference Series, 2020, 1644, 012007.	0.3	10
147	Synthesis and characterizations of magnetically inductive Mn–Zn spinel ferrite nanoparticles for hyperthermia applications. Journal of Materials Science: Materials in Electronics, 2021, 32, 13685-13692.	1.1	10
148	Green synthesis and investigations of structural, cation distribution, morphological, and magnetic properties of nanoscale nickel ferrites: the effect of green fuel proportion. Phase Transitions, 2021, 94, 994-1005.	0.6	10
149	Symmetry transition via tetravalent impurity and investigations on magnetic properties of Li0.5Fe2.5O4. AIP Conference Proceedings, 2018, , .	0.3	9
150	Evaluation of thermoacoustics parameters of CoFe2O4–ethylene glycol nanofluid using ultrasonic velocity technique. Journal of Materials Science: Materials in Electronics, 2019, 30, 1175-1186.	1.1	9
151	Nonlinear Optical Limiting and Radiation Shielding Characteristics of Sm2O3 Doped Cadmium Sodium Lithium Borate Glasses. Materials, 2022, 15, 2330.	1.3	9
152	Effect of Ba2+ – Sr2+ co-substitution on the structural and dielectric properties of Lead Titanate. Journal of Electroceramics, 2012, 29, 62-70.	0.8	8
153	Impact of Trivalent Metal Ion Doping on Structural, Photoluminescence and Electric Properties of NiFe2O4 Thin Films. Journal of Electronic Materials, 2019, 48, 5184-5194.	1.0	8
154	Ferromagnetism in Cu2+ doped ZnO nanoparticles and their physical properties. Journal of Materials Science: Materials in Electronics, 2019, 30, 4014-4025.	1.1	8
155	Multiferroic Fe ³⁺ ion doped BaTiO ₃ Perovskite Nanoceramics: Structural, Optical, Electrical and Dielectric Investigations. Journal of Physics: Conference Series, 2020, 1644, 012058.	0.3	8
156	Intensive analysis of uncoated and surface modified Co-Zn nanoferrite as a heat generator in magnetic fluid hyperthermia applications. Applied Physics A: Materials Science and Processing, 2022, 128, .	1.1	8
157	Suppression of superconductivity in Er1-xCaxBa2Cu3Oy by hole doping and pair breaking. Solid State Communications, 1993, 88, 629-632.	0.9	7
158	Effect of iron oxide (Fe2O3) on the structural, optical, electrical, and dielectric properties of SrO–V2O5 glasses. Glass Physics and Chemistry, 2017, 43, 302-312.	0.2	7
159	Structural and multiferroic properties of Ba2+ doped BiFeO3 nanoparticles synthesized via sol-gel method. AIP Conference Proceedings, 2018, , .	0.3	7
160	Structure, Morphology, Cation Distribution and Magnetic Properties of Cr3+-Substituted CoFe2O4 Nanoparticles. Journal of Superconductivity and Novel Magnetism, 2019, 32, 945-955.	0.8	7
161	Photocatalytic Activity of Nickel Ferrite Nanoparticles Synthesized via Sol-Gel Auto Combustion Method. Advanced Materials Research, 0, 1169, 123-127.	0.3	7
162	Effect of swift heavy ion irradiation on the physical properties of Culn(S0.4Se0.6)2 alloy thin films prepared by solution growth technique. Radiation Physics and Chemistry, 2008, 77, 794-798.	1.4	6

#	Article	IF	CITATIONS
163	Synthesis, Characterization and Magnetic Properties of Cobalt Ferrite Nanoparticles Prepared by Glycine Assisted Sol-Gel Auto-Combustion Technique. Solid State Phenomena, 0, 209, 31-34.	0.3	6
164	X-Ray and Infrared Studies on Superparamagnetic Ni–Zn Ferrite Nanocrystals. Journal of Superconductivity and Novel Magnetism, 2015, 28, 1759-1766.	0.8	6
165	Rietveld refinement and electrical properties of LiTiFeO4. AIP Conference Proceedings, 2017, , .	0.3	6
166	STRUCTURAL, MORPHOLOGICAL CHARACTERIZATION OF Fe _{2-x} Al _x CoO ₄ NANOPARTICLES SYNTHESIZED BY SOL-GEL METHOD. International Journal of Modern Physics B, 2009, 23, 223-234.	1.0	5
167	The effect of oxidizing agents on the electrical properties of cobalt ferrite. Physica Scripta, 2010, 82, 045703.	1.2	5
168	Structural and Electrical Conductivity Studies in Nickel Ferrite Nano-Particles. Solid State Phenomena, 0, 209, 177-181.	0.3	5
169	Structural, magnetic and magnetoelectric properties of the magnetoelectric composite material. Journal of Materials Science: Materials in Electronics, 2014, 25, 3659-3663.	1.1	5
170	Polyethylene glycol coated CoFe2O4 nanoparticles: A potential spinel ferrite for biomedical applications. AIP Conference Proceedings, 2015, , .	0.3	5
171	Influence of Ba2+ on Opto-Electric Properties of Nanocrystalline BiFeO3 Multiferroic. Journal of Electronic Materials, 2019, 48, 358-367.	1.0	5
172	Influence of manganese (Mn) substitution on structural, infrared and dielectric properties of BaTiO3 nanoceramics. Journal of Materials Science: Materials in Electronics, 2020, 31, 19756-19763.	1.1	5
173	Enhanced flux pinning and critical currents by V substitution in YBa2Cu3O7- delta. Superconductor Science and Technology, 1993, 6, 233-237.	1.8	4
174	Mössbauer study of Al and Cr co-substituted Yttrium iron garnets. Hyperfine Interactions, 2009, 192, 93-100.	0.2	4
175	Effect of drug <i>Piper nigrum</i> on physicochemical properties of zinc chloride at varying concentration and temperature investigated through ultrasonic tool. Cogent Chemistry, 2016, 2, 1216721.	2.5	4
176	Effect of RE (Nd3+, Sm3+) oxide on structural, optical properties of Na2O-Li2O-ZnO-B2O3 glass system. AIP Conference Proceedings, 2018, , .	0.3	4
177	Doping Effect of Fe Ions on the Structural, Electrical, and Magnetic Properties of SrTiO3 Nanoceramic Matrix. Journal of Superconductivity and Novel Magnetism, 2019, 32, 1395-1406.	0.8	4
178	Electric, dielectric and AC electrical conductivity study of Al3+ substituted barium hexaferrite nanoparticles synthesized by Sol-gel auto-combustion technique. Materials Today: Proceedings, 2021, 47, 1982-1987.	0.9	4
179	50ÂkGy–100ÂkGy 60Co γ-irradiation effects on structural and DC-electrical properties of sol–gel synthesized ZnF NPs. Journal of Materials Science: Materials in Electronics, 2021, 32, 11017-11027.	1.1	4
180	Influence of hole filling by Ti on the superconductivity of YBa2Cu3O7??. Journal of Superconductivity and Novel Magnetism, 1995, 8, 373-375.	0.5	3

#	Article	IF	CITATIONS
181	Effect of Gamma Irradiation on the Physical Properties of Nanocrystalline Li[sub 0.5]Fe[sub 2.5]O[sub 4]. AIP Conference Proceedings, 2011, , .	0.3	3
182	Evaluation of thermal conductivity of the NiFe2O4 ferrofluids under influence of magnetic field. AlP Conference Proceedings, 2019, , .	0.3	3
183	Structural, Optical and Magnetic Properties of Diamagnetic Cd2+ Incorporated Cobalt Ferrite Thin Films Deposited by Spray Pyrolysis. Journal of Electronic Materials, 2021, 50, 6525-6534.	1.0	3
184	Effect of iron doping on structural, DC electrical resistivity and ferroelectric properties of BaTiO3 nanoceramics. Optik, 2021, 247, 167913.	1.4	3
185	Sintering temperature reflected cation distribution of Zn2+ substituted CoFe2O4. Journal of Central South University, 2013, 20, 1469-1474.	1.2	2
186	Structural, Morphological and Magnetic Properties of Cu ²⁺ Doped ZnO Nanoparticles. Journal of Physics: Conference Series, 2020, 1644, 012008.	0.3	2
187	Dextrose assisted sol-gel auto combustion synthesis and magnetic characterizations of cobalt ferrite nanoparticles. AIP Conference Proceedings, 2020, , .	0.3	2
188	Magnetic Properties of Nickel Ferrite Magnetic Nanoparticles Prepared via Glycine Assisted Sol-Gel Auto Combustion Route. Journal of Physics: Conference Series, 2020, 1644, 012022.	0.3	2
189	Phase transformation, morphology, DC electrical resistivity and dielectric properties investigations of properties of manganese doped barium titanate nanoparticles. Journal of Crystal Growth, 2022, 585, 126588.	0.7	2
190	Critical currents and flux in vanadium doped YBa2Cu3O7â^Î^system. Applied Superconductivity, 1993, 1, 1227-1229.	0.5	1
191	Magnetic properties of Fe2â^'xAlxCoO4(0 â‰ ¤ â‰ ¤ 1) nanoparticles. Journal of Physics: Conference Series, 2010, 200, 072070.	0.3	1
192	Structural and Magnetic Characterization of BaFe[sub 12]O[sub 19] Nanoparticles., 2011,,.		1
193	Nd:YAG laser irradiation effects on electrical properties of polycrystalline Li0.5Fe2.5O4. Journal of Alloys and Compounds, 2012, 511, 31-34.	2.8	1
194	Effect of Zn2+ substitution and zero porosity correction on elastic behavior of CoFe2O4. AIP Conference Proceedings, 2016, , .	0.3	1
195	Synthesis of nanocrystalline nickel ferrite through soft chemistry method: A green chemistry approach using ginger extract. AIP Conference Proceedings, 2020, , .	0.3	1
196	Sol-Gel synthesis, structural characterizations, photo- catalytic degradation for H2 production and UV-Absorption of yttrium-substituted Co-Zn ferrite nanoparticles. AIP Conference Proceedings, 2021, , .	0.3	1
197	Sol-Gel auto-combustion, structural, photo-catalytic activity and UV-VIS study of Co1-xZnxFe2-yCeyO4 NPs ($x=0.3, y=0.04$). AIP Conference Proceedings, 2021, , .	0.3	1
198	Ceramic synthesis and X-ray diffraction characterization of copper ferrite. AIP Conference Proceedings, 2021, , .	0.3	1

#	Article	IF	CITATIONS
199	Editorial Expression of Concern: Synthesis and characterizations of magnetically inductive Mnâ \in "Zn spinel ferrite nanoparticles for hyperthermia applications. Journal of Materials Science: Materials in Electronics, 0, , 1.	1.1	1
200	EFFECT OF JUMP LENGTH OF ELECTRON AND CATION DISTRIBUTION STUDY OF Co1-xZnxFe2-xAlxO4. International Journal of Modern Physics B, 2011, 25, 2229-2236.	1.0	0
201	Effect of temperature on the structural properties of Mn substituted ZnO nanoparticles., 2011,,.		0
202	Effect of drug Piper nigrum on magnesium chloride at varying concentration and temperature through ultrasonic method: A thermoacoustic study. Cogent Physics, 2016, 3, .	0.7	0
203	Structural and magnetic properties of nanocrystalline NiFe2O4 thin film prepared by spray pyrolysis technique. AIP Conference Proceedings, 2018, , .	0.3	0
204	Synthesis of sodium silicate based aerogels by ambient pressure drying and their physical properties. AIP Conference Proceedings, 2019, , .	0.3	0
205	Facile synthesis, structure and infrared properties of CoFe2O4 ferrite nanoparticles (CFN). AIP Conference Proceedings, 2021, , .	0.3	0
206	Synthesis, TGA, structural, and infrared characterization Bafe 12019 nanoparticles. AIP Conference Proceedings, 2021 , , .	0.3	0
207	Synthesis, structural and magnetic properties of NiFe1.96Al0.02Gd0.02O4 nanoparticles (NFAGO). AIP Conference Proceedings, 2021, , .	0.3	0
208	Glycine assisted sol-gel synthesis and structural analysis of CoFe2O4 nanoparticles. AIP Conference Proceedings, 2021, , .	0.3	0
209	Assessment of yield losses due to girdle beetle, <i>Obereopsis brevis </i> Gahan and stemfly, <i>Melanagromyza phaseoli </i> (Zehnt) on soybean. Journal of Entomological Research, 2016, 40, 73.	0.0	0
210	Bioefficacy of some insecticides against thrips and whitefly of chilli. Journal of Entomological Research, 2016, 40, 91.	0.0	0
211	Synthesis, Characterizations and Magnetic Properties of Ce-Al Co-Doped Nickel Ferrite Nanoparticles. Advanced Materials Research, 0, 1169, 79-85.	0.3	O