Manon J Benders

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/235187/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Automatic Segmentation of MR Brain Images With a Convolutional Neural Network. IEEE Transactions on Medical Imaging, 2016, 35, 1252-1261.	8.9	676
2	The Neonatal Connectome During Preterm Brain Development. Cerebral Cortex, 2015, 25, 3000-3013.	2.9	311
3	Cerebral near infrared spectroscopy oximetry in extremely preterm infants: phase II randomised clinical trial. BMJ, The, 2015, 350, g7635-g7635.	6.0	224
4	Origin and dynamics of oligodendrocytes in the developing brain: Implications for perinatal white matter injury. Glia, 2018, 66, 221-238.	4.9	188
5	Impact of nutrition on brain development and its neuroprotective implications following preterm birth. Pediatric Research, 2015, 77, 148-155.	2.3	173
6	Healthy play, better coping: The importance of play for the development of children in health and disease. Neuroscience and Biobehavioral Reviews, 2018, 95, 421-429.	6.1	137
7	A Novel Magnetic Resonance Imaging Score Predicts Neurodevelopmental Outcome After Perinatal Asphyxia and Therapeutic Hypothermia. Journal of Pediatrics, 2018, 192, 33-40.e2.	1.8	125
8	Myth: Cerebral palsy cannot be predicted by neonatal brain imaging. Seminars in Fetal and Neonatal Medicine, 2011, 16, 279-287.	2.3	124
9	The emergence of functional architecture during early brain development. NeuroImage, 2017, 160, 2-14.	4.2	119
10	Effects of early nutrition and growth on brain volumes, white matter microstructure, and neurodevelopmental outcome in preterm newborns. Pediatric Research, 2018, 83, 102-110.	2.3	118
11	MR Imaging and Outcome of Term Neonates with Perinatal Asphyxia: Value of Diffusion-weighted MR Imaging and H MR Spectroscopy. Radiology, 2011, 261, 235-242.	7.3	110
12	New Reference Values for the Neonatal Cerebral Ventricles. Radiology, 2012, 262, 224-233.	7.3	110
13	Impaired oligodendrocyte maturation in preterm infants: Potential therapeutic targets. Progress in Neurobiology, 2016, 136, 28-49.	5.7	110
14	Early Brain Activity Relates to Subsequent Brain Growth in Premature Infants. Cerebral Cortex, 2015, 25, 3014-3024.	2.9	108
15	Brain Volumes at Term-Equivalent Age in Preterm Infants: Imaging Biomarkers for Neurodevelopmental Outcome through Early School Age. Journal of Pediatrics, 2016, 172, 88-95.	1.8	102
16	Cerebral oxygenation and brain activity after perinatal asphyxia: does hypothermia change their prognostic value?. Pediatric Research, 2013, 74, 180-185.	2.3	101
17	The SafeBoosC Phase II Randomised Clinical Trial: A Treatment Guideline for Targeted Near-Infrared-Derived Cerebral Tissue Oxygenation versus Standard Treatment in Extremely Preterm Infants. Neonatology, 2013, 104, 171-178.	2.0	99
18	Functional Connectome of the Fetal Brain. Journal of Neuroscience, 2019, 39, 9716-9724.	3.6	88

#	Article	IF	CITATIONS
19	Evaluation of automatic neonatal brain segmentation algorithms: The NeoBrainS12 challenge. Medical Image Analysis, 2015, 20, 135-151.	11.6	85
20	Perioperative neonatal brain injury is associated with worse schoolâ€age neurodevelopment in children with critical congenital heart disease. Developmental Medicine and Child Neurology, 2018, 60, 1052-1058.	2.1	84
21	Maternal Allopurinol During Fetal Hypoxia Lowers Cord Blood Levels of the Brain Injury Marker S-100B. Pediatrics, 2009, 124, 350-357.	2.1	78
22	<scp>MRI</scp> of the Neonatal Brain: A Review of Methodological Challenges and Neuroscientific Advances. Journal of Magnetic Resonance Imaging, 2021, 53, 1318-1343.	3.4	78
23	Long-term neuroprotective effects of allopurinol after moderate perinatal asphyxia: follow-up of two randomised controlled trials. Archives of Disease in Childhood: Fetal and Neonatal Edition, 2012, 97, F162-F166.	2.8	71
24	Automatic segmentation of MR brain images of preterm infants using supervised classification. NeuroImage, 2015, 118, 628-641.	4.2	71
25	Imaging the premature brain: ultrasound or MRI?. Neuroradiology, 2013, 55, 13-22.	2.2	69
26	Different Patterns of Punctate White Matter Lesions in Serially Scanned Preterm Infants. PLoS ONE, 2014, 9, e108904.	2.5	69
27	Feasibility and Safety of Erythropoietin for Neuroprotection after Perinatal Arterial Ischemic Stroke. Journal of Pediatrics, 2014, 164, 481-486.e2.	1.8	67
28	Neuroimaging of White Matter Injury, Intraventricular and Cerebellar Hemorrhage. Clinics in Perinatology, 2014, 41, 69-82.	2.1	66
29	Microstructural brain development between 30 and 40 weeks corrected age in a longitudinal cohort of extremely preterm infants. NeuroImage, 2014, 103, 214-224.	4.2	65
30	Neurodevelopment After Perinatal Arterial Ischemic Stroke. Pediatrics, 2018, 142, .	2.1	65
31	The SafeBoosC II randomized trial: treatment guided by near-infrared spectroscopy reduces cerebral hypoxia without changing early biomarkers of brain injury. Pediatric Research, 2016, 79, 528-535.	2.3	63
32	How to improve sleep in a neonatal intensive care unit: A systematic review. Early Human Development, 2017, 113, 78-86.	1.8	62
33	MRI and spectroscopy in (near) term neonates with perinatal asphyxia and therapeutic hypothermia. Archives of Disease in Childhood: Fetal and Neonatal Edition, 2017, 102, F147-F152.	2.8	61
34	Promoting neuroregeneration after perinatal arterial ischemic stroke: neurotrophic factors and mesenchymal stem cells. Pediatric Research, 2018, 83, 372-384.	2.3	61
35	Development of Cortical Morphology Evaluated with Longitudinal MR Brain Images of Preterm Infants. PLoS ONE, 2015, 10, e0131552.	2.5	60
36	MRI Based Preterm White Matter Injury Classification: The Importance of Sequential Imaging in Determining Severity of Injury. PLoS ONE, 2016, 11, e0156245.	2.5	59

Manon J Benders

#	Article	IF	CITATIONS
37	Brain Development of the Preterm Neonate After Neonatal Hydrocortisone Treatment for Chronic Lung Disease. Pediatric Research, 2009, 66, 555-559.	2.3	58
38	Relation between clinical risk factors, early cortical changes, and neurodevelopmental outcome in preterm infants. Neurolmage, 2016, 142, 301-310.	4.2	58
39	Preterm brain injury on term-equivalent age MRI in relation to perinatal factors and neurodevelopmental outcome at two years. PLoS ONE, 2017, 12, e0177128.	2.5	58
40	Pre-Wallerian Degeneration in the Neonatal Brain Following Perinatal Cerebral Hypoxia–Ischemia Demonstrated with MRI. Seminars in Perinatology, 2006, 30, 146-150.	2.5	56
41	Neonatal Surgery for Noncardiac Congenital Anomalies: Neonates at Risk of Brain Injury. Journal of Pediatrics, 2017, 182, 335-341.e1.	1.8	56
42	Punctate White Matter Lesions Associated With Altered Brain Development And Adverse Motor Outcome In Preterm Infants. Scientific Reports, 2017, 7, 13250.	3.3	56
43	Association of Histologic Chorioamnionitis With Perinatal Brain Injury and Early Childhood Neurodevelopmental Outcomes Among Preterm Neonates. JAMA Pediatrics, 2018, 172, 534.	6.2	55
44	Does Diffusion Tensor Imaging-Based Tractography at 3 Months of Age Contribute to the Prediction of Motor Outcome After Perinatal Arterial Ischemic Stroke?. Stroke, 2011, 42, 3410-3414.	2.0	54
45	Progress in Neonatal Neurology with a Focus on Neuroimaging in the Preterm Infant. Neuropediatrics, 2015, 46, 234-241.	0.6	51
46	Effects of Posthemorrhagic Ventricular Dilatation in the Preterm InfantÂonÂBrain Volumes and White Matter Diffusion Variables atÂTerm-Equivalent Age. Journal of Pediatrics, 2016, 168, 41-49.e1.	1.8	51
47	Predictors of Outcomes in Hypoxic-Ischemic Encephalopathy following Hypothermia: A Meta-Analysis. Neonatology, 2020, 117, 411-427.	2.0	50
48	Feasibility and safety of intranasally administered mesenchymal stromal cells after perinatal arterial ischaemic stroke in the Netherlands (PASSIoN): a first-in-human, open-label intervention study. Lancet Neurology, The, 2022, 21, 528-536.	10.2	50
49	Delayed cortical gray matter development in neonates with severe congenital heart disease. Pediatric Research, 2016, 80, 668-674.	2.3	48
50	A phase II randomized clinical trial on cerebral near-infrared spectroscopy plus a treatment guideline versus treatment as usual for extremely preterm infants during the first three days of life (SafeBoosC): study protocol for a randomized controlled trial. Trials, 2013, 14, 120.	1.6	46
51	Neuroimaging, cardiovascular physiology, and functional outcomes in infants with congenital heart disease. Developmental Medicine and Child Neurology, 2017, 59, 894-902.	2.1	46
52	Premature Birth and Developmental Programming: Mechanisms of Resilience and Vulnerability. Frontiers in Psychiatry, 2020, 11, 531571.	2.6	45
53	Maternal allopurinol administration during suspected fetal hypoxia: a novel neuroprotective intervention? A multicentre randomised placebo controlled trial. Archives of Disease in Childhood: Fetal and Neonatal Edition, 2015, 100, F216-F223.	2.8	44
54	No neurodevelopmental benefit of cerebral oximetry in the first randomised trial (SafeBoosC) Tj ETQq0 0 0 rgBT /	Overlock	10 Tf 50 67 T 44

of Paediatrics, 2019, 108, 275-281.

#	Article	lF	CITATIONS
55	Neonatal brain oxygenation during thoracoscopic correction of esophageal atresia. Surgical Endoscopy and Other Interventional Techniques, 2016, 30, 2811-2817.	2.4	43
56	Neonatal posterior cerebral artery stroke: clinical presentation, <scp>MRI</scp> findings, and outcome. Developmental Medicine and Child Neurology, 2013, 55, 283-290.	2.1	42
57	Longitudinal Regional Brain Development and Clinical Risk Factors in Extremely Preterm Infants. Journal of Pediatrics, 2016, 178, 93-100.e6.	1.8	42
58	Fiber Tracking at Term Displays Gender Differences Regarding Cognitive and Motor Outcome at 2 Years of Age in Preterm Infants. Pediatric Research, 2011, 70, 626-632.	2.3	41
59	Neonatal DTI early after birth predicts motor outcome in preterm infants with periventricular hemorrhagic infarction. Pediatric Research, 2015, 78, 298-303.	2.3	39
60	Assessment of Brain Injury and Brain Volumes after Posthemorrhagic Ventricular Dilatation: A Nested Substudy of the Randomized Controlled ELVIS Trial. Journal of Pediatrics, 2019, 208, 191-197.e2.	1.8	39
61	Early biomarkers of brain injury and cerebral hypo- and hyperoxia in the SafeBoosC II trial. PLoS ONE, 2017, 12, e0173440.	2.5	37
62	Clinical Risk Factors for Punctate White Matter Lesions on Early Magnetic Resonance Imaging in Preterm Newborns. Journal of Pediatrics, 2017, 182, 34-40.e1.	1.8	36
63	White matter maturation in the neonatal brain is predictive of school age cognitive capacities in children born very preterm. Developmental Medicine and Child Neurology, 2017, 59, 939-946.	2.1	36
64	Brain Injury in Infants with Critical Congenital Heart Disease: Insights from Two Clinical Cohorts with Different Practice Approaches. Journal of Pediatrics, 2019, 215, 75-82.e2.	1.8	36
65	Sequential Cranial Ultrasound and Cerebellar Diffusion Weighted Imaging Contribute to the Early Prognosis of Neurodevelopmental Outcome in Preterm Infants. PLoS ONE, 2014, 9, e109556.	2.5	35
66	Automated cotâ€side tracking of functional brain age in preterm infants. Annals of Clinical and Translational Neurology, 2020, 7, 891-902.	3.7	33
67	Brain and CSF Volumes in Fetuses and Neonates with Antenatal Diagnosis of Critical Congenital Heart Disease: A Longitudinal MRI Study. American Journal of Neuroradiology, 2019, 40, 885-891.	2.4	32
68	Perinatal Arterial Stroke in the Preterm Infant. Seminars in Perinatology, 2008, 32, 344-349.	2.5	31
69	Postnatal Nutrition to Improve Brain Development in the Preterm Infant: A Systematic Review From Bench to Bedside. Frontiers in Physiology, 2019, 10, 961.	2.8	31
70	The Potential of Stem Cell Therapy to Repair White Matter Injury in Preterm Infants: Lessons Learned From Experimental Models. Frontiers in Physiology, 2019, 10, 540.	2.8	31
71	The long-term effect of perinatal asphyxia on hippocampal volumes. Pediatric Research, 2019, 85, 43-49.	2.3	31
72	Early Prediction of Hypoxic-Ischemic Brain Injury by a New Panel of Biomarkers in a Population of Term Newborns. Oxidative Medicine and Cellular Longevity, 2018, 2018, 1-10.	4.0	29

#	Article	IF	CITATIONS
73	Brain injury in the international multicenter randomized SafeBoosC phase II feasibility trial: cranial ultrasound and magnetic resonance imaging assessments. Pediatric Research, 2016, 79, 466-472.	2.3	27
74	Allopurinol: Old Drug, New Indication in Neonates?. Current Pharmaceutical Design, 2018, 23, 5935-5942.	1.9	27
75	Neurodevelopmental Outcomes in Preterm Infants with White Matter Injury Using a New MRI Classification. Neonatology, 2019, 116, 227-235.	2.0	26
76	Prediction of cognitive and motor outcome of preterm infants based on automatic quantitative descriptors from neonatal MR brain images. Scientific Reports, 2017, 7, 2163.	3.3	25
77	Amplitude-Integrated Electroencephalography for Early Recognition of Brain Injury in Neonates with Critical Congenital Heart Disease. Journal of Pediatrics, 2018, 202, 199-205.e1.	1.8	24
78	Early Oxygen-Utilization and Brain Activity in Preterm Infants. PLoS ONE, 2015, 10, e0124623.	2.5	23
79	Nasal administration of mesenchymal stem cells reverses chemotherapy-induced peripheral neuropathy in mice. Brain, Behavior, and Immunity, 2021, 93, 43-54.	4.1	23
80	Phase-Contrast Magnetic Resonance Angiography Measurements of Global Cerebral Blood Flow in the Neonate. Pediatric Research, 2011, 69, 544-547.	2.3	22
81	Corticospinal Tract Injury Precedes Thalamic Volume Reduction in Preterm Infants with Cystic Periventricular Leukomalacia. Journal of Pediatrics, 2015, 167, 260-268.e3.	1.8	22
82	Cerebello-cerebral connectivity in the developing brain. Brain Structure and Function, 2017, 222, 1625-1634.	2.3	22
83	Effect of general anesthesia on neonatal aEEG—A cohort study of patients with non-cardiac congenital anomalies. PLoS ONE, 2017, 12, e0183581.	2.5	22
84	Clinical and neuroimaging characteristics of cerebral sinovenous thrombosis in neonates undergoing cardiac surgery. Journal of Thoracic and Cardiovascular Surgery, 2018, 155, 1150-1158.	0.8	22
85	Mammillary body atrophy and other MRI correlates of school-age outcome following neonatal hypoxic-ischemic encephalopathy. Scientific Reports, 2021, 11, 5017.	3.3	22
86	Therapies for neonatal encephalopathy: Targeting the latent, secondary and tertiary phases of evolving brain injury. Seminars in Fetal and Neonatal Medicine, 2021, 26, 101256.	2.3	22
87	The development and validation of a cerebral ultrasound scoring system for infants with hypoxic-ischaemic encephalopathy. Pediatric Research, 2020, 87, 59-66.	2.3	21
88	The relationship between preterm birth and sleep in children at school age: A systematic review. Sleep Medicine Reviews, 2021, 57, 101447.	8.5	21
89	A Uniform Description of Perioperative Brain MRI Findings in Infants with Severe Congenital Heart Disease: Results of a European Collaboration. American Journal of Neuroradiology, 2021, 42, 2034-2039.	2.4	21
90	Rhythmic EEG patterns in extremely preterm infants: Classification and association with brain injury and outcome. Clinical Neurophysiology, 2017, 128, 2428-2435.	1.5	20

#	Article	IF	CITATIONS
91	Brain microstructural development in neonates with critical congenital heart disease: An atlas-based diffusion tensor imaging study. NeuroImage: Clinical, 2019, 21, 101672.	2.7	20
92	Population Pharmacokinetics of Allopurinol in Full-Term Neonates With Perinatal Asphyxia. Therapeutic Drug Monitoring, 2006, 28, 339-344.	2.0	19
93	Therapeutic Hypothermia Modifies Perinatal Asphyxia-Induced Changes of the Corpus Callosum and Outcome in Neonates. PLoS ONE, 2015, 10, e0123230.	2.5	19
94	Brain Oxygenation During Thoracoscopic Repair of Long Gap Esophageal Atresia. World Journal of Surgery, 2017, 41, 1384-1392.	1.6	19
95	MRI Changes in the Thalamus and Basal Ganglia of Full-Term Neonates with Perinatal Asphyxia. Neonatology, 2018, 114, 253-260.	2.0	19
96	Changes in brain morphology and microstructure in relation to early brain activity in extremely preterm infants. Pediatric Research, 2018, 83, 834-842.	2.3	18
97	Intranasal mesenchymal stem cell therapy to boost myelination after encephalopathy of prematurity. Glia, 2021, 69, 655-680.	4.9	18
98	Brain Activity and Cerebral Oxygenation After Perinatal Arterial Ischemic Stroke Are Associated With Neurodevelopment. Stroke, 2019, 50, 2668-2676.	2.0	17
99	Association of early skin breaks and neonatal thalamic maturation. Neurology, 2020, 95, e3420-e3427.	1.1	17
100	Early motor outcomes in infants with critical congenital heart disease are related to neonatal brain development and brain injury. Developmental Medicine and Child Neurology, 2022, 64, 192-199.	2.1	17
101	Increase in Brain Volumes after Implementation of a Nutrition Regimen in Infants Born Extremely Preterm. Journal of Pediatrics, 2020, 223, 57-63.e5.	1.8	17
102	10Kin1day: A Bottom-Up Neuroimaging Initiative. Frontiers in Neurology, 2019, 10, 425.	2.4	15
103	Precision Medicine in Neonates: A Tailored Approach to Neonatal Brain Injury. Frontiers in Pediatrics, 2021, 9, 634092.	1.9	15
104	The value of cardiorespiratory parameters for sleep state classification in preterm infants: A systematic review. Sleep Medicine Reviews, 2021, 58, 101462.	8.5	15
105	Automatic quantification of ischemic injury on diffusion-weighted MRI of neonatal hypoxic ischemic encephalopathy. NeuroImage: Clinical, 2017, 14, 222-232.	2.7	14
106	Introduction of Ultra-High-Field MR Imaging in Infants: Preparations and Feasibility. American Journal of Neuroradiology, 2020, 41, 1532-1537.	2.4	14
107	Sensory-based interventions in the NICU: systematic review of effects on preterm brain development. Pediatric Research, 2022, 92, 47-60.	2.3	14
108	Nutritional Intake, White Matter Integrity, and Neurodevelopment in Extremely Preterm Born Infants. Nutrients, 2021, 13, 3409.	4.1	13

#	Article	IF	CITATIONS
109	Cerebellar injury in term neonates with hypoxic–ischemic encephalopathy is underestimatedÂ. Pediatric Research, 2021, 89, 1171-1178.	2.3	12
110	Magnetic resonance imaging based noninvasive measurements of brain hemodynamics in neonates: a review. Pediatric Research, 2016, 80, 641-650.	2.3	11
111	Serum docosahexaenoic acid levels are associated with brain volumes in extremely preterm born infants. Pediatric Research, 2021, , .	2.3	11
112	The Sleep Well Baby project: an automated real-time sleep–wake state prediction algorithm in preterm infants. Sleep, 2022, 45, .	1.1	11
113	Predictive Role of Urinary Metabolic Profile for Abnormal MRI Score in Preterm Neonates. Disease Markers, 2018, 2018, 1-9.	1.3	10
114	Neuroprotective Drugs in Infants With Severe Congenital Heart Disease: A Systematic Review. Frontiers in Neurology, 2018, 9, 521.	2.4	10
115	Postoperative cerebral oxygenation was not associated with new brain injury in infants with congenital heart disease. Journal of Thoracic and Cardiovascular Surgery, 2019, 158, 867-877.e1.	0.8	10
116	Early prediction of unilateral cerebral palsy in infants at risk: MRI versus the hand assessment for infants. Pediatric Research, 2020, 87, 932-939.	2.3	10
117	Preterm infants with isolated cerebellar hemorrhage show bilateral cortical alterations at term equivalent age. Scientific Reports, 2020, 10, 5283.	3.3	10
118	The impact of trophic and immunomodulatory factors on oligodendrocyte maturation: Potential treatments for encephalopathy of prematurity. Glia, 2021, 69, 1311-1340.	4.9	10
119	Cortical Sparing in Preterm Ischemic Arterial Stroke. Stroke, 2016, 47, 869-871.	2.0	9
120	Shape variability of the central sulcus in the developing brain: A longitudinal descriptive and predictive study in preterm infants. NeuroImage, 2022, 251, 118837.	4.2	9
121	Should early cranial MRI of preterm infants become routine?. Archives of Disease in Childhood: Fetal and Neonatal Edition, 2015, 100, F284-F285.	2.8	8
122	Regenerative Therapies to Restore Interneuron Disturbances in Experimental Models of Encephalopathy of Prematurity. International Journal of Molecular Sciences, 2021, 22, 211.	4.1	8
123	MR imaging for accurate prediction of outcome after perinatal arterial ischemic stroke: Sooner not necessarily better. European Journal of Paediatric Neurology, 2017, 21, 666-670.	1.6	7
124	High-frequency oscillations recorded with surface EEG in neonates with seizures. Clinical Neurophysiology, 2021, 132, 1452-1461.	1.5	7
125	Nutritional Supplementation Reduces Lesion Size and Neuroinflammation in a Sex-Dependent Manner in a Mouse Model of Perinatal Hypoxic-Ischemic Brain Injury. Nutrients, 2022, 14, 176.	4.1	7
126	Neuromonitoring, neuroimaging, and neurodevelopmental follow-up practices in neonatal congenital heart disease: a European survey. Pediatric Research, 2023, 93, 168-175.	2.3	7

#	Article	IF	CITATIONS
127	Growth patterns in fetuses with isolated cardiac defects. Prenatal Diagnosis, 2018, 38, 328-336.	2.3	6
128	Glomerular Filtration Rate in Asphyxiated Neonates Under Therapeutic Whole-Body Hypothermia, Quantified by Mannitol Clearance. Clinical Pharmacokinetics, 2021, 60, 897-906.	3.5	6
129	A scoping review of behavioral sleep stage classification methods for preterm infants. Sleep Medicine, 2022, 90, 74-82.	1.6	6
130	Early-life stress exposure and large-scale covariance brain networks in extremely preterm-born infants. Translational Psychiatry, 2022, 12, .	4.8	6
131	Non-right-handedness in children born extremely preterm: Relation to early neuroimaging and long-term neurodevelopment. PLoS ONE, 2020, 15, e0235311.	2.5	5
132	CeRebrUm and CardIac Protection with ALlopurinol in Neonates with Critical Congenital Heart Disease Requiring Cardiac Surgery with Cardiopulmonary Bypass (CRUCIAL): study protocol of a phase III, randomized, quadruple-blinded, placebo-controlled, Dutch multicenter trial. Trials, 2022, 23, 174.	1.6	5
133	Brain temperature of infants with neonatal encephalopathy following perinatal asphyxia calculated using magnetic resonance spectroscopy. Pediatric Research, 2020, 88, 279-284.	2.3	4
134	Predictive Role of F2-Isoprostanes as Biomarkers for Brain Damage after Neonatal Surgery. Disease Markers, 2017, 2017, 1-9.	1.3	3
135	NutriBrain: protocol for a randomised, double-blind, controlled trial to evaluate the effects of a nutritional product on brain integrity in preterm infants. BMC Pediatrics, 2021, 21, 132.	1.7	3
136	Pharmacokinetic/Pharmacodynamic Modelling of Allopurinol, its Active Metabolite Oxypurinol, and Biomarkers Hypoxanthine, Xanthine and Uric Acid in Hypoxic-Ischemic Encephalopathy Neonates. Clinical Pharmacokinetics, 2022, 61, 321-333.	3.5	3
137	Post-hemorrhagic ventricular dilatation affects white matter maturation in extremely preterm infants. Pediatric Research, 2021, , .	2.3	1
138	Convolutional Neural Network-Based Regression for Quantification of Brain Characteristics Using MRI. Advances in Intelligent Systems and Computing, 2019, , 577-586.	0.6	0
139	A Longitudinal Study of the Evolution of the Central Sulcus' Shape in Preterm Infants Using Manifold Learning. Lecture Notes in Computer Science, 2019, , 143-152.	1.3	0
140	Corpus callosum injury after neurosurgical intervention for posthemorrhagic ventricular dilatation and association with neurodevelopmental outcome at 2 years. Journal of Neurosurgery: Pediatrics, 2022, 30, 31-38.	1.3	0