Dilpreet S Bajwa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2351751/publications.pdf Version: 2024-02-01

DII DDEET S RAINNA

#	Article	IF	CITATIONS
1	Soy-protein and corn-derived polyol based coatings for corrosion mitigation in reinforced concrete. Construction and Building Materials, 2022, 319, 126056.	3.2	10
2	High fiber fraction DDCS – A functional filler for manufacturing low-density particleboards. Industrial Crops and Products, 2022, 181, 114793.	2.5	2
3	Enhancing UV-shielding and mechanical properties of polylactic acid nanocomposites by adding lignin coated cellulose nanocrystals. Industrial Crops and Products, 2022, 183, 114904.	2.5	8
4	Biobased plasticizer and cellulose nanocrystals improve mechanical properties of polylactic acid composites. Industrial Crops and Products, 2022, 183, 114981.	2.5	15
5	Experimental investigation into the direct feeding of coupling agent, cellulose nanocrystals, and nano zinc oxide in high-density polyethylene. Composites Part C: Open Access, 2022, 8, 100287.	1.5	5
6	Advancements in traditional and nanosized flame retardants for polymers—A review. Journal of Applied Polymer Science, 2021, 138, 50050.	1.3	51
7	Fabrication and Testing of Soy-Based Polyurethane Foam with Flame Retardant Properties. Journal of Polymers and the Environment, 2021, 29, 1153-1161.	2.4	13
8	A review of current physical techniques for dispersion of cellulose nanomaterials in polymer matrices. Reviews on Advanced Materials Science, 2021, 60, 325-341.	1.4	43
9	Silane compatibilzation to improve the dispersion, thermal and mechancial properties of cellulose nanocrystals in poly (ethylene oxide). Nanocomposites, 2021, 7, 87-96.	2.2	8
10	Role of Hybrid Nano-Zinc Oxide and Cellulose Nanocrystals on the Mechanical, Thermal, and Flammability Properties of Poly (Lactic Acid) Polymer. Journal of Composites Science, 2021, 5, 43.	1.4	25
11	Gauge length and temperature influence on the tensile properties of stretch broken carbon fiber tows. Composites Part A: Applied Science and Manufacturing, 2021, 146, 106426.	3.8	3
12	Cellulose nanocrystal based composites: A review. Composites Part C: Open Access, 2021, 5, 100164.	1.5	69
13	Robust and porous 3D-printed multifunctional hydrogels for efficient removal of cationic and anionic dyes from aqueous solution. Microporous and Mesoporous Materials, 2021, 327, 111382.	2.2	9
14	Influence of biobased plasticizers on 3D printed polylactic acid composites filled with sustainable biofiller. Industrial Crops and Products, 2021, 173, 114132.	2.5	23
15	Effect of agro-derived corrosion inhibitors on the properties of Portland cement mortar. Construction and Building Materials, 2021, 310, 125236.	3.2	5
16	Spin coating method improved the performance characteristics of films obtained from poly(lactic) Tj ETQq0 0 0 r	gBT_/Overl	ock 10 Tf 50

17	Employing corn derived products to reduce the corrosivity of pavement deicing materials. Construction and Building Materials, 2020, 263, 120662.	3.2	25
18	Cellulose Mediated Transferrin Nanocages for Enumeration of Circulating Tumor Cells for Head and Neck Cancer. Scientific Reports, 2020, 10, 10010.	1.6	18

DILPREET S BAJWA

#	Article	IF	CITATIONS
19	Sonication amplitude and processing time influence the cellulose nanocrystals morphology and dispersion. Nanocomposites, 2020, 6, 41-46.	2.2	69
20	High-Performance Styrene-Butadiene Rubber Nanocomposites Reinforced by Surface-Modified Cellulose Nanofibers. ACS Omega, 2019, 4, 13189-13199.	1.6	52
21	Corn distiller's dried grains with solubles (DDGS) - A value added functional material for wood composites. Industrial Crops and Products, 2019, 139, 111525.	2.5	13
22	Functionalized Cellulose Nanocrystals: A Potential Fire Retardant for Polymer Composites. Polymers, 2019, 11, 1361.	2.0	17
23	A concise review of current lignin production, applications, products and their environmental impact. Industrial Crops and Products, 2019, 139, 111526.	2.5	612
24	A numerical model approach to predict moisture absorption in densified solid biomass during storage. Industrial Crops and Products, 2019, 140, 111529.	2.5	5
25	Modeling and experimental verification of nonlinear behavior of cellulose nanocrystals reinforced poly(lactic acid) composites. Mechanics of Materials, 2019, 135, 77-87.	1.7	21
26	Insight on the influence of nano zinc oxide on the thermal, dynamic mechanical, and flow characteristics of Poly(lactic acid)– zinc oxide composites. Polymer Engineering and Science, 2019, 59, 1242-1249.	1.5	15
27	A review on cellulose nanocrystals as promising biocompounds for the synthesis of nanocomposite hydrogels. Carbohydrate Polymers, 2019, 216, 247-259.	5.1	110
28	Characterization of bio-carbon and ligno-cellulosic fiber reinforced bio-composites with compatibilizer. Construction and Building Materials, 2019, 204, 193-202.	3.2	47
29	Mechanical Techniques for Enhanced Dispersion of Cellulose Nanocrystals in Polymer Matrices. , 2019, , 437-449.		1
30	Rheological properties of cellulose nanocrystals engineered polylactic acid nanocomposites. Composites Part B: Engineering, 2019, 161, 483-489.	5.9	50
31	Deterioration in the Physico-Mechanical and Thermal Properties of Biopolymers Due to Reprocessing. Polymers, 2019, 11, 58.	2.0	44
32	Esterified cellulose nanocrystals as reinforcement in poly(lactic acid) nanocomposites. Cellulose, 2019, 26, 2349-2362.	2.4	45
33	Green esterification: A new approach to improve thermal and mechanical properties of poly(lactic) Tj ETQq1 1 ().784314 rg 1.3	gBT /Overlock 50
34	Cellulose nanofibers produced from various agricultural residues and their reinforcement effects in polymer nanocomposites. Journal of Applied Polymer Science, 2018, 135, 46304.	1.3	28
35	Spin-coating: A new approach for improving dispersion of cellulose nanocrystals and mechanical properties of poly (lactic acid) composites. Carbohydrate Polymers, 2018, 190, 139-147.	5.1	55
36	Fiber from DDGS and Corn Grain as Alternative Fillers in Polymer Composites with High Density Polyethylene from Bio-based and Petroleum Sources. Journal of Polymers and the Environment, 2018, 26, 2311-2322.	2.4	7

DILPREET S BAJWA

#	Article	IF	CITATIONS
37	Compatibilization Improves Performance of Biodegradable Biopolymer Composites Without Affecting UV Weathering Characteristics. Journal of Polymers and the Environment, 2018, 26, 4188-4200.	2.4	22
38	Epoxidized sucrose soyate—A novel green resin for crop straw based low density fiberboards. Industrial Crops and Products, 2017, 107, 400-408.	2.5	22
39	Mechanical properties of polylactic acid composites reinforced with cotton gin waste and flax fibers. Procedia Engineering, 2017, 200, 370-376.	1.2	29
40	Enhancement of termite (Reticulitermes flavipes L.) resistance in mycelium reinforced biofiber-composites. Industrial Crops and Products, 2017, 107, 420-426.	2.5	23
41	Performance of UV weathered HDPE composites containing hull fiber from DDGS and corn grain. Industrial Crops and Products, 2017, 107, 409-419.	2.5	12
42	Feasibility of Reprocessing Natural Fiber Filled Poly(lactic acid) Composites: An In-Depth Investigation. Advances in Materials Science and Engineering, 2017, 2017, 1-10.	1.0	9
43	Influence of Hybridizing Flax and Hemp-Agave Fibers with Glass Fiber as Reinforcement in a Polyurethane Composite. Materials, 2016, 9, 390.	1.3	12
44	Dried distillers grains with solubles as a multifunctional filler in low density wood particleboards. Industrial Crops and Products, 2016, 89, 21-28.	2.5	8
45	Application of bioethanol derived lignin for improving physico-mechanical properties of thermoset biocomposites. International Journal of Biological Macromolecules, 2016, 89, 265-272.	3.6	24
46	The mechanical properties of soybean straw and wheat straw blended medium density fiberboards made with methylene diphenyl diisocyanate binder. Industrial Crops and Products, 2015, 75, 200-205.	2.5	21
47	Impact of biofibers and coupling agents on the weathering characteristics of composites. Polymer Degradation and Stability, 2015, 120, 212-219.	2.7	26
48	Evaluation of cattail (Typha spp.) for manufacturing composite panels. Industrial Crops and Products, 2015, 75, 195-199.	2.5	24
49	Functionalized Distiller's Dried Grains with Solubles for Improving Impact Properties of Polylactic Acid. Journal of Biobased Materials and Bioenergy, 2015, 9, 182-187.	0.1	3
50	Commercial-scale evaluation of two agricultural waste products, cotton burr/stem and module wraps, in thermoplastic composites and its comparison with laboratory-scale results. Journal of Thermoplastic Composite Materials, 2014, 27, 741-757.	2.6	5
51	Recycling of Ligno-Cellulosic and Polyethylene Wastes from Agricultural Operations in Thermoplastic Composites. Waste and Biomass Valorization, 2014, 5, 709-714.	1.8	2
52	Properties of thermoplastic composites with cotton and guayule biomass residues as fiber fillers. Industrial Crops and Products, 2011, 33, 747-755.	2.5	73
53	Effect of Laboratory Aging on the Physical and Mechanical Properties of Wood-Polymer Composites. Journal of Thermoplastic Composite Materials, 2009, 22, 227-243.	2.6	16
54	Optimal Substitution of Cotton Burr and Linters in Thermoplastic Composites. Forest Products Journal, 2009, 59, 40-46.	0.2	15

#	Article	IF	CITATIONS
55	Guayule as a wood preservative. Industrial Crops and Products, 2001, 14, 105-111.	2.5	72