Dilpreet S Bajwa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2351751/publications.pdf

Version: 2024-02-01

55 2,006 22 43 papers citations h-index g-index

57 57 57 57 2469

times ranked

citing authors

docs citations

all docs

#	Article	IF	CITATIONS
1	A concise review of current lignin production, applications, products and their environmental impact. Industrial Crops and Products, 2019, 139, 111526.	2.5	612
2	A review on cellulose nanocrystals as promising biocompounds for the synthesis of nanocomposite hydrogels. Carbohydrate Polymers, 2019, 216, 247-259.	5.1	110
3	Properties of thermoplastic composites with cotton and guayule biomass residues as fiber fillers. Industrial Crops and Products, 2011, 33, 747-755.	2.5	73
4	Guayule as a wood preservative. Industrial Crops and Products, 2001, 14, 105-111.	2.5	72
5	Sonication amplitude and processing time influence the cellulose nanocrystals morphology and dispersion. Nanocomposites, 2020, 6, 41-46.	2.2	69
6	Cellulose nanocrystal based composites: A review. Composites Part C: Open Access, 2021, 5, 100164.	1.5	69
7	Spin-coating: A new approach for improving dispersion of cellulose nanocrystals and mechanical properties of poly (lactic acid) composites. Carbohydrate Polymers, 2018, 190, 139-147.	5.1	55
8	High-Performance Styrene-Butadiene Rubber Nanocomposites Reinforced by Surface-Modified Cellulose Nanofibers. ACS Omega, 2019, 4, 13189-13199.	1.6	52
9	Advancements in traditional and nanosized flame retardants for polymers—A review. Journal of Applied Polymer Science, 2021, 138, 50050.	1.3	51
10	Green esterification: A new approach to improve thermal and mechanical properties of poly(lactic) Tj ETQq0 0 C) rgBT /Ov€ 1.3	erlock 10 Tf 50 50
11	Rheological properties of cellulose nanocrystals engineered polylactic acid nanocomposites. Composites Part B: Engineering, 2019, 161, 483-489.	5.9	50
11	Rheological properties of cellulose nanocrystals engineered polylactic acid nanocomposites.	5.9 3.2	
	Rheological properties of cellulose nanocrystals engineered polylactic acid nanocomposites. Composites Part B: Engineering, 2019, 161, 483-489. Characterization of bio-carbon and ligno-cellulosic fiber reinforced bio-composites with		50
12	Rheological properties of cellulose nanocrystals engineered polylactic acid nanocomposites. Composites Part B: Engineering, 2019, 161, 483-489. Characterization of bio-carbon and ligno-cellulosic fiber reinforced bio-composites with compatibilizer. Construction and Building Materials, 2019, 204, 193-202. Esterified cellulose nanocrystals as reinforcement in poly(lactic acid) nanocomposites. Cellulose,	3.2	50 47
12	Rheological properties of cellulose nanocrystals engineered polylactic acid nanocomposites. Composites Part B: Engineering, 2019, 161, 483-489. Characterization of bio-carbon and ligno-cellulosic fiber reinforced bio-composites with compatibilizer. Construction and Building Materials, 2019, 204, 193-202. Esterified cellulose nanocrystals as reinforcement in poly(lactic acid) nanocomposites. Cellulose, 2019, 26, 2349-2362. Deterioration in the Physico-Mechanical and Thermal Properties of Biopolymers Due to Reprocessing.	3.2	50 47 45
12 13 14	Rheological properties of cellulose nanocrystals engineered polylactic acid nanocomposites. Composites Part B: Engineering, 2019, 161, 483-489. Characterization of bio-carbon and ligno-cellulosic fiber reinforced bio-composites with compatibilizer. Construction and Building Materials, 2019, 204, 193-202. Esterified cellulose nanocrystals as reinforcement in poly(lactic acid) nanocomposites. Cellulose, 2019, 26, 2349-2362. Deterioration in the Physico-Mechanical and Thermal Properties of Biopolymers Due to Reprocessing. Polymers, 2019, 11, 58. A review of current physical techniques for dispersion of cellulose nanomaterials in polymer	3.2 2.4 2.0	50 47 45 44
12 13 14 15	Rheological properties of cellulose nanocrystals engineered polylactic acid nanocomposites. Composites Part B: Engineering, 2019, 161, 483-489. Characterization of bio-carbon and ligno-cellulosic fiber reinforced bio-composites with compatibilizer. Construction and Building Materials, 2019, 204, 193-202. Esterified cellulose nanocrystals as reinforcement in poly(lactic acid) nanocomposites. Cellulose, 2019, 26, 2349-2362. Deterioration in the Physico-Mechanical and Thermal Properties of Biopolymers Due to Reprocessing. Polymers, 2019, 11, 58. A review of current physical techniques for dispersion of cellulose nanomaterials in polymer matrices. Reviews on Advanced Materials Science, 2021, 60, 325-341. Mechanical properties of polylactic acid composites reinforced with cotton gin waste and flax fibers.	3.2 2.4 2.0	50 47 45 44 43

#	Article	IF	Citations
19	Employing corn derived products to reduce the corrosivity of pavement deicing materials. Construction and Building Materials, 2020, 263, 120662.	3.2	25
20	Role of Hybrid Nano-Zinc Oxide and Cellulose Nanocrystals on the Mechanical, Thermal, and Flammability Properties of Poly (Lactic Acid) Polymer. Journal of Composites Science, 2021, 5, 43.	1.4	25
21	Evaluation of cattail (Typha spp.) for manufacturing composite panels. Industrial Crops and Products, 2015, 75, 195-199.	2.5	24
22	Application of bioethanol derived lignin for improving physico-mechanical properties of thermoset biocomposites. International Journal of Biological Macromolecules, 2016, 89, 265-272.	3.6	24
23	Enhancement of termite (Reticulitermes flavipes L.) resistance in mycelium reinforced biofiber-composites. Industrial Crops and Products, 2017, 107, 420-426.	2.5	23
24	Influence of biobased plasticizers on 3D printed polylactic acid composites filled with sustainable biofiller. Industrial Crops and Products, 2021, 173, 114132.	2.5	23
25	Epoxidized sucrose soyate—A novel green resin for crop straw based low density fiberboards. Industrial Crops and Products, 2017, 107, 400-408.	2.5	22
26	Compatibilization Improves Performance of Biodegradable Biopolymer Composites Without Affecting UV Weathering Characteristics. Journal of Polymers and the Environment, 2018, 26, 4188-4200.	2.4	22
27	The mechanical properties of soybean straw and wheat straw blended medium density fiberboards made with methylene diphenyl diisocyanate binder. Industrial Crops and Products, 2015, 75, 200-205.	2.5	21
28	Modeling and experimental verification of nonlinear behavior of cellulose nanocrystals reinforced poly(lactic acid) composites. Mechanics of Materials, 2019, 135, 77-87.	1.7	21
29	Cellulose Mediated Transferrin Nanocages for Enumeration of Circulating Tumor Cells for Head and Neck Cancer. Scientific Reports, 2020, 10, 10010.	1.6	18
30	Functionalized Cellulose Nanocrystals: A Potential Fire Retardant for Polymer Composites. Polymers, 2019, 11, 1361.	2.0	17
31	Effect of Laboratory Aging on the Physical and Mechanical Properties of Wood-Polymer Composites. Journal of Thermoplastic Composite Materials, 2009, 22, 227-243.	2.6	16
32	Insight on the influence of nano zinc oxide on the thermal, dynamic mechanical, and flow characteristics of Poly(lactic acid)– zinc oxide composites. Polymer Engineering and Science, 2019, 59, 1242-1249.	1.5	15
33	Optimal Substitution of Cotton Burr and Linters in Thermoplastic Composites. Forest Products Journal, 2009, 59, 40-46.	0.2	15
34	Biobased plasticizer and cellulose nanocrystals improve mechanical properties of polylactic acid composites. Industrial Crops and Products, 2022, 183, 114981.	2.5	15
35	Spin coating method improved the performance characteristics of films obtained from poly(lactic) Tj ETQq $1\ 1\ 0$.	784314 rg 1.7	gBT ₁ /Overlock
36	Corn distiller's dried grains with solubles (DDGS) - A value added functional material for wood composites. Industrial Crops and Products, 2019, 139, 111525.	2.5	13

#	Article	IF	CITATIONS
37	Fabrication and Testing of Soy-Based Polyurethane Foam with Flame Retardant Properties. Journal of Polymers and the Environment, 2021, 29, 1153-1161.	2.4	13
38	Influence of Hybridizing Flax and Hemp-Agave Fibers with Glass Fiber as Reinforcement in a Polyurethane Composite. Materials, 2016, 9, 390.	1.3	12
39	Performance of UV weathered HDPE composites containing hull fiber from DDGS and corn grain. Industrial Crops and Products, 2017, 107, 409-419.	2.5	12
40	Soy-protein and corn-derived polyol based coatings for corrosion mitigation in reinforced concrete. Construction and Building Materials, 2022, 319, 126056.	3.2	10
41	Feasibility of Reprocessing Natural Fiber Filled Poly(lactic acid) Composites: An In-Depth Investigation. Advances in Materials Science and Engineering, 2017, 2017, 1-10.	1.0	9
42	Robust and porous 3D-printed multifunctional hydrogels for efficient removal of cationic and anionic dyes from aqueous solution. Microporous and Mesoporous Materials, 2021, 327, 111382.	2.2	9
43	Dried distillers grains with solubles as a multifunctional filler in low density wood particleboards. Industrial Crops and Products, 2016, 89, 21-28.	2.5	8
44	Silane compatibilization to improve the dispersion, thermal and mechancial properties of cellulose nanocrystals in poly (ethylene oxide). Nanocomposites, 2021, 7, 87-96.	2.2	8
45	Enhancing UV-shielding and mechanical properties of polylactic acid nanocomposites by adding lignin coated cellulose nanocrystals. Industrial Crops and Products, 2022, 183, 114904.	2.5	8
46	Fiber from DDGS and Corn Grain as Alternative Fillers in Polymer Composites with High Density Polyethylene from Bio-based and Petroleum Sources. Journal of Polymers and the Environment, 2018, 26, 2311-2322.	2.4	7
47	Commercial-scale evaluation of two agricultural waste products, cotton burr/stem and module wraps, in thermoplastic composites and its comparison with laboratory-scale results. Journal of Thermoplastic Composite Materials, 2014, 27, 741-757.	2.6	5
48	A numerical model approach to predict moisture absorption in densified solid biomass during storage. Industrial Crops and Products, 2019, 140, 111529.	2.5	5
49	Effect of agro-derived corrosion inhibitors on the properties of Portland cement mortar. Construction and Building Materials, 2021, 310, 125236.	3.2	5
50	Experimental investigation into the direct feeding of coupling agent, cellulose nanocrystals, and nano zinc oxide in high-density polyethylene. Composites Part C: Open Access, 2022, 8, 100287.	1.5	5
51	Gauge length and temperature influence on the tensile properties of stretch broken carbon fiber tows. Composites Part A: Applied Science and Manufacturing, 2021, 146, 106426.	3.8	3
52	Functionalized Distiller's Dried Grains with Solubles for Improving Impact Properties of Polylactic Acid. Journal of Biobased Materials and Bioenergy, 2015, 9, 182-187.	0.1	3
53	Recycling of Ligno-Cellulosic and Polyethylene Wastes from Agricultural Operations in Thermoplastic Composites. Waste and Biomass Valorization, 2014, 5, 709-714.	1.8	2
54	High fiber fraction DDGS – A functional filler for manufacturing low-density particleboards. Industrial Crops and Products, 2022, 181, 114793.	2.5	2

ARTICLE IF CITATIONS

Mechanical Techniques for Enhanced Dispersion of Cellulose Nanocrystals in Polymer Matrices.,

1

1