
Christophe Zimmer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2351460/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sensitive visualization of SARS-CoV-2 RNA with CoronaFISH. Life Science Alliance, 2022, 5, e202101124.	1.3	19
2	Molecular organization and mechanics of single vimentin filaments revealed by super-resolution imaging. Science Advances, 2022, 8, eabm2696.	4.7	21
3	FISH-quant v2: a scalable and modular tool for smFISH image analysis. Rna, 2022, 28, 786-795.	1.6	45
4	Modulation of the intrinsic chromatin binding property of HIV-1 integrase by LEDGF/p75. Nucleic Acids Research, 2021, 49, 11241-11256.	6.5	9
5	Super-resolution visualization and modeling of human chromosomal regions reveals cohesin-dependent loop structures. Genome Biology, 2021, 22, 150.	3.8	7
6	Single-molecule localization microscopy. Nature Reviews Methods Primers, 2021, 1, .	11.8	390
7	Listeriolysin S: A bacteriocin from <i>Listeria monocytogenes</i> that induces membrane permeabilization in a contact-dependent manner. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	10
8	Clustering and reverse transcription of HIVâ€1 genomes in nuclear niches of macrophages. EMBO Journal, 2021, 40, e105247.	3.5	62
9	A Dual Protein-mRNA Localization Screen Reveals Compartmentalized Translation and Widespread Co-translational RNA Targeting. Developmental Cell, 2020, 54, 773-791.e5.	3.1	88
10	Chromatin mobility upon DNA damage: state of the art and remaining questions. Current Genetics, 2019, 65, 1-9.	0.8	29
11	How the Genome Folds: The Biophysics of Four-Dimensional Chromatin Organization. Annual Review of Biophysics, 2019, 48, 231-253.	4.5	52
12	lmJoy: an open-source computational platform for the deep learning era. Nature Methods, 2019, 16, 1199-1200.	9.0	110
13	Deep learning massively accelerates super-resolution localization microscopy. Nature Biotechnology, 2018, 36, 460-468.	9.4	424
14	Visualization of Arenavirus RNA Species in Individual Cells by Single-Molecule Fluorescence <i>In Situ</i> Hybridization Suggests a Model of Cyclical Infection and Clearance during Persistence. Journal of Virology, 2018, 92, .	1.5	20
15	From dynamic chromatin architecture to DNA damage repair and back. Nucleus, 2018, 9, 161-170.	0.6	13
16	A computational framework to study sub-cellular RNA localization. Nature Communications, 2018, 9, 4584.	5.8	47
17	ZOLA-3D allows flexible 3D localization microscopy over an adjustable axial range. Nature Communications, 2018, 9, 2409.	5.8	89
18	The imaging tsunami: Computational opportunities and challenges. Current Opinion in Systems Biology, 2017, 4, 105-113.	1.3	27

CHRISTOPHE ZIMMER

#	Article	IF	CITATIONS
19	Functional organization of cytoplasmic inclusion bodies in cells infected by respiratory syncytial virus. Nature Communications, 2017, 8, 563.	5.8	141
20	Chromatin stiffening underlies enhanced locus mobility after <scp>DNA</scp> damage in budding yeast. EMBO Journal, 2017, 36, 2595-2608.	3.5	64
21	Faster and less phototoxic 3D fluorescence microscopy using a versatile compressed sensing scheme. Optics Express, 2017, 25, 13668.	1.7	18
22	Inferring the physical properties of yeast chromatin through Bayesian analysis of whole nucleus simulations. Genome Biology, 2017, 18, 81.	3.8	55
23	smiFISH and FISH-quant – a flexible single RNA detection approach with super-resolution capability. Nucleic Acids Research, 2016, 44, e165-e165.	6.5	312
24	Evidence for actin dual role in regulating chromosome organization and dynamics in yeast. Journal of Cell Science, 2016, 129, 681-92.	1.2	73
25	Chromatin organization at the nuclear pore favours HIV replication. Nature Communications, 2015, 6, 6483.	5.8	115
26	High-quality genome (re)assembly using chromosomal contact data. Nature Communications, 2014, 5, 5695.	5.8	142
27	Filling annotation gaps in yeast genomes using genome-wide contact maps. Bioinformatics, 2014, 30, 2105-2113.	1.8	36
28	Computational Models of Large-Scale Genome Architecture. International Review of Cell and Molecular Biology, 2014, 307, 275-349.	1.6	64
29	FlAsH-PALM: Super-resolution Pointillist Imaging with FlAsH-Tetracysteine Labeling. Methods in Molecular Biology, 2014, 1174, 183-193.	0.4	10
30	Effect of nuclear architecture on the efficiency of double-strand break repair. Nature Cell Biology, 2013, 15, 694-699.	4.6	117
31	Speciesâ€specific impact of the autophagy machinery on Chikungunya virus infection. EMBO Reports, 2013, 14, 534-544.	2.0	121
32	Regulated vesicle fusion generates signaling nanoterritories that control T cell activation at the immunological synapse. Journal of Experimental Medicine, 2013, 210, 2415-2433.	4.2	128
33	Systematic characterization of the conformation and dynamics of budding yeast chromosome XII. Journal of Cell Biology, 2013, 202, 201-210.	2.3	51
34	How to build a yeast nucleus. Nucleus, 2013, 4, 361-366.	0.6	19
35	FISH-quant: automatic counting of transcripts in 3D FISH images. Nature Methods, 2013, 10, 277-278.	9.0	338
36	Hierarchies of Host Factor Dynamics at the Entry Site of Shigella flexneri during Host Cell Invasion. Infection and Immunity, 2012, 80, 2548-2557.	1.0	34

CHRISTOPHE ZIMMER

#	Article	IF	CITATIONS
37	Superresolution imaging of HIV in infected cells with FlAsH-PALM. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 8564-8569.	3.3	135
38	A Predictive Computational Model of the Dynamic 3D Interphase Yeast Nucleus. Current Biology, 2012, 22, 1881-1890.	1.8	149
39	From microbes to numbers: extracting meaningful quantities from images. Cellular Microbiology, 2012, 14, 1828-1835.	1.1	9
40	Single-Molecule Localization Super-Resolution Microscopy: Deeper and Faster. Microscopy and Microanalysis, 2012, 18, 1419-1429.	0.2	45
41	Super-Resolution Dynamic Imaging of Dendritic Spines Using a Low-Affinity Photoconvertible Actin Probe. PLoS ONE, 2011, 6, e15611.	1.1	137
42	Principles of chromosomal organization: lessons from yeast. Journal of Cell Biology, 2011, 192, 723-733.	2.3	121
43	QuickPALM: 3D real-time photoactivation nanoscopy image processing in ImageJ. Nature Methods, 2010, 7, 339-340.	9.0	404
44	Chromosome arm length and nuclear constraints determine the dynamic relationship of yeast subtelomeres. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 2025-2030.	3.3	135
45	Entrapment of Intracytosolic Bacteria by Septin Cage-like Structures. Cell Host and Microbe, 2010, 8, 433-444.	5.1	229
46	High-resolution statistical mapping reveals gene territories in live yeast. Nature Methods, 2008, 5, 1031-1037.	9.0	173
47	Improving single particle localization with an empirically calibrated Gaussian kernel. , 2008, , .		4
48	SAGA interacting factors confine sub-diffusion of transcribed genes to the nuclear envelope. Nature, 2006, 441, 770-773.	13.7	421
49	Richardson–Lucy algorithm with total variation regularization for 3D confocal microscope deconvolution. Microscopy Research and Technique, 2006, 69, 260-266.	1.2	387
50	Human Tumor Necrosis Factor is a Chemoattractant for the Parasite Entamoeba histolytica. Infection and Immunity, 2006, 74, 1407-1411.	1.0	47
51	Biophysical Active Contours for Cell Tracking I: Tension and Bending. , 2006, , .		6
52	Segmenting and tracking fluorescent cells in dynamic 3-D microscopy with coupled active surfaces. IEEE Transactions on Image Processing, 2005, 14, 1396-1410.	6.0	284
53	Coupled parametric active contours. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27, 1838-1842.	9.7	141
54	Imaging movement of malaria parasites during transmission by Anopheles mosquitoes. Cellular Microbiology, 2004, 6, 687-694.	1.1	171

4

CHRISTOPHE ZIMMER

#	Article	IF	CITATIONS
55	Myosin II and the Gal-GalNAc lectin play a crucial role in tissue invasion by Entamoeba histolytica. Cellular Microbiology, 2004, 7, 19-27.	1.1	68
56	EhPAK, a member of the p21-activated kinase family, is involved in the control ofEntamoeba histolyticamigration and phagocytosis. Journal of Cell Science, 2003, 116, 61-71.	1.2	66
57	Segmentation and tracking of migrating cells in videomicroscopy with parametric active contours: a tool for cell-based drug testing. IEEE Transactions on Medical Imaging, 2002, 21, 1212-1221.	5.4	247
58	Membrane-cytoskeleton interactions during the formation of the immunological synapse and subsequent T-cell activation. Immunological Reviews, 2002, 189, 123-135.	2.8	39
59	Galileo Magnetometer Measurements: A Stronger Case for a Subsurface Ocean at Europa. Science, 2000, 289, 1340-1343.	6.0	576