Leann Tilley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2351384/publications.pdf Version: 2024-02-01

LEANN THEY

#	Article	IF	CITATIONS
1	Oxidative stress in malaria parasite-infected erythrocytes: host–parasite interactions. International Journal for Parasitology, 2004, 34, 163-189.	1.3	534
2	Malaria parasite proteins that remodel the host erythrocyte. Nature Reviews Microbiology, 2009, 7, 341-354.	13.6	340
3	Artemisinin activity against <i>Plasmodium falciparum</i> requires hemoglobin uptake and digestion. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 11405-11410.	3.3	293
4	Artemisinin Action and Resistance in Plasmodium falciparum. Trends in Parasitology, 2016, 32, 682-696.	1.5	271
5	Targeting the Cell Stress Response of Plasmodium falciparum to Overcome Artemisinin Resistance. PLoS Biology, 2015, 13, e1002132.	2.6	254
6	Mitochondrial metabolism of sexual and asexual blood stages of the malaria parasite Plasmodium falciparum. BMC Biology, 2013, 11, 67.	1.7	238
7	Inhibition of the peroxidative degradation of haem as the basis of action of chloroquine and other quinoline antimalarials. Biochemical Journal, 1999, 339, 363-370.	1.7	215
8	Structure- and function-based design of Plasmodium-selective proteasome inhibitors. Nature, 2016, 530, 233-236.	13.7	208
9	Artemisinin kills malaria parasites by damaging proteins and inhibiting the proteasome. Nature Communications, 2018, 9, 3801.	5.8	193
10	Altered temporal response of malaria parasites determines differential sensitivity to artemisinin. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 5157-5162.	3.3	172
11	Quinoline antimalarials: Mechanisms of action and resistance. International Journal for Parasitology, 1997, 27, 231-240.	1.3	163
12	Digestive-vacuole genesis and endocytic processes in the early intraerythrocytic stages of <i>Plasmodium falciparum</i> . Journal of Cell Science, 2010, 123, 441-450.	1.2	160
13	Characterization of the pathway for transport of the cytoadherence-mediating protein, PfEMP1, to the host cell surface in malaria parasite-infected erythrocytes. Molecular Microbiology, 2003, 50, 1215-1227.	1.2	159
14	ATP-dependent translocation of amino phospholipids across the human erythrocyte membrane. FEBS Letters, 1986, 194, 21-27.	1.3	154
15	Defining the role of PfCRT in Plasmodium falciparum chloroquine resistance. Molecular Microbiology, 2005, 56, 323-333.	1.2	154
16	Food vacuole-associated lipid bodies and heterogeneous lipid environments in the malaria parasite, Plasmodium falciparum. Molecular Microbiology, 2004, 54, 109-122.	1.2	151
17	Plasmodium species: master renovators of their host cells. Nature Reviews Microbiology, 2016, 14, 494-507.	13.6	149
18	Soft X-ray microscopy analysis of cell volume and hemoglobin content in erythrocytes infected with asexual and sexual stages of Plasmodium falciparum. Journal of Structural Biology, 2012, 177, 224-232.	1.3	139

#	Article	IF	CITATIONS
19	Fluorescence photobleaching analysis for the study of cellular dynamics. European Biophysics Journal, 2002, 31, 36-51.	1.2	126
20	Tip-Enhanced Raman Scattering (TERS) from Hemozoin Crystals within a Sectioned Erythrocyte. Nano Letters, 2011, 11, 1868-1873.	4.5	126
21	Trafficking of the major virulence factor to the surface of transfected P falciparum–infected erythrocytes. Blood, 2005, 105, 4078-4087.	0.6	124
22	The ring-infected erythrocyte surface antigen of Plasmodium falciparum associates with spectrin in the erythrocyte membrane. Molecular and Biochemical Parasitology, 1991, 46, 137-147.	0.5	123
23	Inhibition of Heme Detoxification Processes Underlies the Antimalarial Activity of Terpene Isonitrile Compounds from Marine Sponges. Journal of Medicinal Chemistry, 2001, 44, 873-885.	2.9	121
24	Signal-mediated export of proteins from the malaria parasite to the host erythrocyte. Journal of Cell Biology, 2005, 171, 587-592.	2.3	120
25	A thiol probe for measuring unfolded protein load and proteostasis in cells. Nature Communications, 2017, 8, 474.	5.8	116
26	Decreased K13 Abundance Reduces Hemoglobin Catabolism and Proteotoxic Stress, Underpinning Artemisinin Resistance. Cell Reports, 2019, 29, 2917-2928.e5.	2.9	113
27	Artemisinin and a Series of Novel Endoperoxide Antimalarials Exert Early Effects on Digestive Vacuole Morphology. Antimicrobial Agents and Chemotherapy, 2008, 52, 98-109.	1.4	112
28	A Cluster of Ring Stage–specific Genes Linked to a Locus Implicated in Cytoadherence inPlasmodium falciparumCodes for PEXEL-negative and PEXEL-positive Proteins Exported into the Host Cell. Molecular Biology of the Cell, 2006, 17, 3613-3624.	0.9	111
29	The Signal Sequence of Exported Protein-1 Directs the Green Fluorescent Protein to the Parasitophorous Vacuole of Transfected Malaria Parasites. Journal of Biological Chemistry, 2003, 278, 6532-6542.	1.6	110
30	Multiple stiffening effects of nanoscale knobs on human red blood cells infected with <i>Plasmodium falciparum</i> malaria parasite. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 6068-6073.	3.3	108
31	Origin, composition, organization and function of the inner membrane complex of <i>Plasmodium falciparum</i> gametocytes. Journal of Cell Science, 2012, 125, 2053-63.	1.2	105
32	Genesis of and Trafficking to the Maurer's Clefts of Plasmodium falciparum -Infected Erythrocytes. Molecular and Cellular Biology, 2006, 26, 4074-4085.	1.1	104
33	Novel bisquinoline antimalarials. Biochemical Pharmacology, 1996, 52, 551-559.	2.0	99
34	Iron and heme metabolism in Plasmodium falciparum and the mechanism of action of artemisinins. Current Opinion in Microbiology, 2013, 16, 722-727.	2.3	99
35	The Maurer's cleft protein MAHRP1 is essential for trafficking of PfEMP1 to the surface of <i>Plasmodium falciparum</i> â€infected erythrocytes. Molecular Microbiology, 2008, 68, 1300-1314.	1.2	94
36	Selective permeabilization of the host cell membrane of Plasmodium falciparum-infected red blood cells with streptolysin O and equinatoxin II. Biochemical Journal, 2007, 403, 167-175.	1.7	93

#	Article	IF	CITATIONS
37	Inhibition of the peroxidative degradation of haem as the basis of action of chloroquine and other quinoline antimalarials. Biochemical Journal, 1999, 339, 363.	1.7	92
38	The Apical Complex Provides a Regulated Gateway for Secretion of Invasion Factors in Toxoplasma. PLoS Pathogens, 2014, 10, e1004074.	2.1	92
39	Novel phenothiazine antimalarials: synthesis, antimalarial activity, and inhibition of the formation of β-haematin. Biochemical Pharmacology, 2002, 63, 833-842.	2.0	91
40	Protein trafficking in Plasmodium falciparum-infected red blood cells. Trends in Parasitology, 2004, 20, 581-589.	1.5	91
41	MAHRP-1, a Novel Plasmodium falciparum Histidine-rich Protein, Binds Ferriprotoporphyrin IX and Localizes to the Maurer's Clefts. Journal of Biological Chemistry, 2003, 278, 35373-35383.	1.6	89
42	Evaluation of pH during cytostomal endocytosis and vacuolar catabolism of haemoglobin in <i>Plasmodium falciparum</i> . Biochemical Journal, 2007, 407, 343-354.	1.7	81
43	Electron tomography of the Maurer's cleft organelles of <i>Plasmodium falciparum</i> â€infected erythrocytes reveals novel structural features. Molecular Microbiology, 2008, 67, 703-718.	1.2	80
44	A homologue of Sar1p localises to a novel trafficking pathway in malaria-infected erythrocytes. European Journal of Cell Biology, 1999, 78, 453-462.	1.6	78
45	Haemoglobin degradation underpins the sensitivity of early ring stage <i>Plasmodium falciparum</i> to artemisinins. Journal of Cell Science, 2016, 129, 406-16.	1.2	78
46	Whole cell imaging reveals novel modular features of the exomembrane system of the malaria parasite, Plasmodium falciparum. International Journal for Parasitology, 2010, 40, 123-134.	1.3	76
47	Identification of an endoplasmic reticulum-resident calcium-binding protein with multiple EF-hand motifs in asexual stages of Plasmodium falciparum1Note: Nucleotide sequence data reported in this paper have been deposited in the GenBankâ,,¢ data base with the accession number AF016410.1. Molecular and Biochemical Parasitology, 1997, 89, 283-293.	0.5	75
48	The Plasmodium falciparum-infected red blood cell. International Journal of Biochemistry and Cell Biology, 2011, 43, 839-842.	1.2	75
49	The Plasmodium falciparum protein RESA interacts with the erythrocyte cytoskeleton and modifies erythrocyte thermal stability. Molecular and Biochemical Parasitology, 1994, 66, 59-69.	0.5	73
50	Reversible host cell remodeling underpins deformability changes in malaria parasite sexual blood stages. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 4800-4805.	3.3	73
51	Delayed death in the malaria parasite Plasmodium falciparum is caused by disruption of prenylation-dependent intracellular trafficking. PLoS Biology, 2019, 17, e3000376.	2.6	73
52	Evidence for a role for a <i>Plasmodium falciparum</i> homologue of Sec31p in the export of proteins to the surface of malaria parasite-infected erythrocytes. Journal of Cell Science, 2001, 114, 3377-3386.	1.2	73
53	Spatial and temporal mapping of the PfEMP1 export pathway in <i>Plasmodium falciparum</i> . Cellular Microbiology, 2013, 15, 1401-1418.	1.1	69
54	Disrupting assembly of the inner membrane complex blocks Plasmodium falciparum sexual stage development. PLoS Pathogens, 2017, 13, e1006659.	2.1	69

#	Article	IF	CITATIONS
55	Identification and Characterization of Heme-interacting Proteins in the Malaria Parasite, Plasmodium falciparum. Journal of Biological Chemistry, 2003, 278, 27354-27361.	1.6	68
56	Generation of an erythrocyte vesicle transport system by Plasmodium falciparum malaria parasites. Blood, 2003, 102, 3420-3426.	0.6	68
57	Primaquine synergises the activity of chloroquine against chloroquine-resistant P. falciparum. Biochemical Pharmacology, 2005, 70, 1158-1166.	2.0	68
58	Detection and Quantification of Early-Stage Malaria Parasites in Laboratory Infected Erythrocytes by Attenuated Total Reflectance Infrared Spectroscopy and Multivariate Analysis. Analytical Chemistry, 2014, 86, 4379-4386.	3.2	68
59	Histidine-rich protein 2 of the malaria parasite, Plasmodium falciparum, is involved in detoxification of the by-products of haemoglobin degradation. Molecular and Biochemical Parasitology, 2001, 115, 77-86.	0.5	67
60	Correct Promoter Control Is Needed for Trafficking of the Ring-Infected Erythrocyte Surface Antigen to the Host Cytosol in Transfected Malaria Parasites. Infection and Immunity, 2004, 72, 6095-6105.	1.0	66
61	Proteomic analysis reveals novel proteins associated with the <i>Plasmodium</i> protein exporter PTEX and a loss of complex stability upon truncation of the core PTEX component, PTEX150. Cellular Microbiology, 2016, 18, 1551-1569.	1.1	66
62	Synthesis and Activity of Some Antimalarial Bisquinolines. Journal of Medicinal Chemistry, 1995, 38, 204-206.	2.9	65
63	Targeted mutagenesis of the ringâ€exported proteinâ€1 of <i>Plasmodium falciparum</i> disrupts the architecture of Maurer's cleft organelles. Molecular Microbiology, 2008, 69, 938-953.	1.2	65
64	An exported protein-interacting complex involved in the trafficking of virulence determinants in Plasmodium-infected erythrocytes. Nature Communications, 2017, 8, 16044.	5.8	65
65	The Twists and Turns of Maurer's Cleft Trafficking in <i>P. falciparum</i> â€Infected Erythrocytes. Traffic, 2008, 9, 187-197.	1.3	64
66	MAHRP2, an exported protein of Plasmodium falciparum, is an essential component of Maurer's cleft tethers. Molecular Microbiology, 2010, 77, 1136-1152.	1.2	64
67	A 95 kDa protein of <i>Plasmodium vivax</i> and <i>P. cynomolgi</i> visualized by threeâ€dimensional tomography in the caveola–vesicle complexes (Schüffner's dots) of infected erythrocytes is a member of the PHIST family. Molecular Microbiology, 2012, 84, 816-831.	1.2	62
68	Delivery of the Malaria Virulence Protein PfEMP1 to the Erythrocyte Surface Requires Cholesterol-Rich Domains. Eukaryotic Cell, 2006, 5, 849-860.	3.4	60
69	Novel Conjugated Quinoline–Indoles Compromise Plasmodium falciparum Mitochondrial Function and Show Promising Antimalarial Activity. Journal of Medicinal Chemistry, 2013, 56, 6200-6215.	2.9	59
70	Cryo transmission X-ray imaging of the malaria parasite, P. falciparum. Journal of Structural Biology, 2011, 173, 161-168.	1.3	58
71	Hematinâ^'Hematin Self-Association States Involved in the Formation and Reactivity of the Malaria Parasite Pigment, Hemozoin. Biochemistry, 2010, 49, 6804-6811.	1.2	57
72	Bio-sensing with butterfly wings: naturally occurring nano-structures for SERS-based malaria parasite detection. Physical Chemistry Chemical Physics, 2015, 17, 21164-21168.	1.3	57

#	Article	lF	CITATIONS
73	Modulation of the function of human MDR1 P-glycoprotein by the antimalarial drug mefloquine. Biochemical Pharmacology, 1996, 52, 1545-1552.	2.0	55
74	Organization and function of an actin cytoskeleton in <i>Plasmodium falciparum</i> gametocytes. Cellular Microbiology, 2015, 17, 207-225.	1.1	55
75	Target Validation and Identification of Novel Boronate Inhibitors of the <i>Plasmodium falciparum</i> Proteasome. Journal of Medicinal Chemistry, 2018, 61, 10053-10066.	2.9	54
76	K13, the Cytostome, and Artemisinin Resistance. Trends in Parasitology, 2020, 36, 533-544.	1.5	54
77	Illuminating Plasmodium falciparum-infected red blood cells. Trends in Parasitology, 2007, 23, 268-277.	1.5	52
78	Tracking Glideosome-Associated Protein 50 Reveals the Development and Organization of the Inner Membrane Complex of Plasmodium falciparum. Eukaryotic Cell, 2011, 10, 556-564.	3.4	51
79	The antimalarial drug, chloroquine, interacts with lactate dehydrogenase from Plasmodium falciparum. Molecular and Biochemical Parasitology, 1997, 88, 215-224.	0.5	50
80	Specific expression and export of the Plasmodium falciparum Gametocyte EXported Protein-5 marks the gametocyte ring stage. Malaria Journal, 2015, 14, 334.	0.8	50
81	Highâ€resolution Xâ€ray imaging of <i>Plasmodium falciparum</i> â€infected red blood cells. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2008, 73A, 949-957.	1.1	49
82	Cellular architecture of Plasmodium falciparum-infected erythrocytes. International Journal for Parasitology, 2010, 40, 1127-1135.	1.3	49
83	Comparison of the Exposure Time Dependence of the Activities of Synthetic Ozonide Antimalarials and Dihydroartemisinin against K13 Wild-Type and Mutant Plasmodium falciparum Strains. Antimicrobial Agents and Chemotherapy, 2016, 60, 4501-4510.	1.4	49
84	Shape-shifting gametocytes: how and why does P. falciparum go banana-shaped?. Trends in Parasitology, 2012, 28, 471-478.	1.5	48
85	Trafficking determinants for PfEMP3 export and assembly under thePlasmodium falciparum-infected red blood cell membrane. Molecular Microbiology, 2005, 58, 1039-1053.	1.2	47
86	Specific Inhibition of the Eubacterial DNA Ligase by Arylamino Compounds. Antimicrobial Agents and Chemotherapy, 1999, 43, 2766-2772.	1.4	46
87	The exported chaperone Hsp70-x supports virulence functions for Plasmodium falciparum blood stage parasites. PLoS ONE, 2017, 12, e0181656.	1.1	45
88	Phage-displayed Peptides Bind to the Malarial Protein Apical Membrane Antigen-1 and Inhibit the Merozoite Invasion of Host Erythrocytes. Journal of Biological Chemistry, 2002, 277, 50303-50310.	1.6	44
89	The Multidrug Resistance Protein Is Photoaffinity Labeled by a Quinoline-Based Drug at Multiple Sites. Biochemistry, 2000, 39, 6094-6102.	1.2	43
90	Discriminating the Intraerythrocytic Lifecycle Stages of the Malaria Parasite Using Synchrotron FT-IR Microspectroscopy and an Artificial Neural Network. Analytical Chemistry, 2009, 81, 2516-2524.	3.2	42

#	Article	IF	CITATIONS
91	A new Python library to analyse skeleton images confirms malaria parasite remodelling of the red blood cell membrane skeleton. PeerJ, 2018, 6, e4312.	0.9	41
92	Synthesis, antimalarial activity and inhibition of haem detoxification of novel bisquinolines. Bioorganic and Medicinal Chemistry Letters, 2001, 11, 2075-2077.	1.0	40
93	Serum Lipoproteins Promote Efficient Presentation of the Malaria Virulence Protein PfEMP1 at the Erythrocyte Surface. Eukaryotic Cell, 2007, 6, 1584-1594.	3.4	40
94	Dual labeling with a far red probe permits analysis of growth and oxidative stress in <i>P. falciparum</i> â€infected erythrocytes. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2010, 77A, 253-263.	1.1	40
95	Chloroquine and Other Quinoline Antimalarials. , 0, , 87-121.		40
96	Resonance Raman spectroscopy can detect structural changes in haemozoin (malaria pigment) following incubation with chloroquine in infected erythrocytes. FEBS Letters, 2008, 582, 1087-1092.	1.3	39
97	Re-assessing the locations of components of the classical vesicle-mediated trafficking machinery in transfected Plasmodium falciparum. International Journal for Parasitology, 2007, 37, 1127-1141.	1.3	37
98	Genetic ablation of a Maurer's cleft protein prevents assembly of the <i>Plasmodium falciparum</i> virulence complex. Molecular Microbiology, 2011, 81, 982-993.	1.2	37
99	Whole-cell phase contrast imaging at the nanoscale using Fresnel Coherent Diffractive Imaging Tomography. Scientific Reports, 2013, 3, 2288.	1.6	37
100	Spatial organization of protein export in malaria parasite blood stages. Traffic, 2018, 19, 605-623.	1.3	37
101	Decreased rotational diffusion of band 3 in melanesian ovalocytes from Papua, New Guinea. Journal of Membrane Biology, 1991, 121, 59-66.	1.0	36
102	Protein trafficking in malaria-infected erythrocytes. International Journal for Parasitology, 1998, 28, 1671-1680.	1.3	36
103	Plasmodium falciparum induces reorganization of host membrane proteins during intraerythrocytic growth. Blood, 2004, 103, 2404-2406.	0.6	35
104	Random Sequence Libraries Displayed on Phage: Identification of Biologically Important Molecules. Combinatorial Chemistry and High Throughput Screening, 2002, 5, 1-14.	0.6	33
105	The proteasome as a target for protozoan parasites. Expert Opinion on Therapeutic Targets, 2019, 23, 903-914.	1.5	32
106	The structure of the PA28–20S proteasome complex from Plasmodium falciparum and implications for proteostasis. Nature Microbiology, 2019, 4, 1990-2000.	5.9	31
107	The knob protein KAHRP assembles into a ring-shaped structure that underpins virulence complex assembly. PLoS Pathogens, 2019, 15, e1007761.	2.1	31
108	Contrasting Inducible Knockdown of the Auxiliary PTEX Component PTEX88 in P. falciparum and P. berghei Unmasks a Role in Parasite Virulence. PLoS ONE, 2016, 11, e0149296.	1.1	31

#	Article	IF	CITATIONS
109	Rotational dynamics of the integral membrane protein, band 3, as a probe of the membrane events associated with Plasmodium falciparum infections of human erythrocytes. Biochimica Et Biophysica Acta - Biomembranes, 1990, 1025, 135-142.	1.4	30
110	Characterisation of a Î-COP homologue in the malaria parasite, Plasmodium falciparum. Molecular and Biochemical Parasitology, 2002, 123, 11-21.	0.5	30
111	Diagnosing malaria infected cells at the single cell level using focal plane array Fourier transform infrared imaging spectroscopy. Analyst, The, 2014, 139, 4769-4774.	1.7	30
112	Proteolytic digestion of band 3 at an external site alters the erythrocyte membrane organisation and may facilitate malarial invasion. Molecular and Biochemical Parasitology, 1993, 62, 233-242.	0.5	29
113	Novel Endoperoxide Antimalarials:  Synthesis, Heme Binding, and Antimalarial Activity. Journal of Medicinal Chemistry, 2004, 47, 1833-1839.	2.9	29
114	Structure of glyceraldehyde-3-phosphate dehydrogenase fromPlasmodium falciparum. Acta Crystallographica Section D: Biological Crystallography, 2005, 61, 1213-1221.	2.5	28
115	Red Blood Cells Polarize Green Laser Light Revealing Hemoglobin′s Enhanced Nonâ€Fundamental Raman Modes. ChemPhysChem, 2014, 15, 3963-3968.	1.0	28
116	Initiation of gametocytogenesis at very low parasite density in Plasmodium falciparum infection. Journal of Infectious Diseases, 2017, 215, 1167-1174.	1.9	28
117	An atypical cyclin-dependent kinase controls Plasmodium falciparum proliferation rate. Kinome, 2013, 1, .	0.5	25
118	Role of Plasmodium falciparum Protein GEXP07 in Maurer's Cleft Morphology, Knob Architecture, and P. falciparum EMP1 Trafficking. MBio, 2020, 11, .	1.8	25
119	Reaction hijacking of tyrosine tRNA synthetase as a new whole-of-life-cycle antimalarial strategy. Science, 2022, 376, 1074-1079.	6.0	25
120	Isolation of Peptides That Mimic Epitopes on a Malarial Antigen from Random Peptide Libraries Displayed on Phage. Infection and Immunity, 1999, 67, 4679-4688.	1.0	24
121	Optimal assay design for determining the in vitro sensitivity of ring stage Plasmodium falciparum to artemisinins. International Journal for Parasitology, 2014, 44, 893-899.	1.3	23
122	Surface areaâ€ŧoâ€volume ratio, not cellular viscoelasticity, is the major determinant of red blood cell traversal through small channels. Cellular Microbiology, 2021, 23, e13270.	1.1	22
123	Human Erythrocyte Band 7.2b Is Preferentially Labeled by a Photoreactive Phospholipid. Biochemical and Biophysical Research Communications, 1996, 224, 108-114.	1.0	21
124	Isolation from Phage Display Libraries of Single Chain Variable Fragment Antibodies That Recognize Conformational Epitopes in the Malaria Vaccine Candidate, Apical Membrane Antigen-1. Journal of Biological Chemistry, 1997, 272, 25678-25684.	1.6	20
125	Ultrastructure of the Asexual Blood Stages of Plasmodium falciparum. Methods in Cell Biology, 2010, 96, 93-116.	0.5	20
126	Detailed morphological characterisation of Hendra virus infection of different cell types using super-resolution and conventional imaging. Virology Journal, 2014, 11, 200.	1.4	20

#	Article	IF	CITATIONS
127	A repeat sequence domain of the ringâ€exported proteinâ€1 of <scp><i>P</i></scp> <i>lasmodium falciparum</i> controls export machinery architecture and virulence protein trafficking. Molecular Microbiology, 2015, 98, 1101-1114.	1.2	20
128	Multimodal analysis of <i>Plasmodium knowlesi</i> â€infected erythrocytes reveals large invaginations, swelling of the host cell, and rheological defects. Cellular Microbiology, 2019, 21, e13005.	1.1	20
129	Synthesis and Activity of Some Antimalarial Bisquinolinemethanols. Australian Journal of Chemistry, 1997, 50, 1091.	0.5	20
130	The Quinoline-Based Drug,N-{4-[1-hydroxy-2-(dibutylamino)ethyl] quinolin-8-yl}-4-azidosalicylamide, Photoaffinity Labels the Multidrug Resistance Protein (MRP) at a Biologically Relevant Site. Biochemical and Biophysical Research Communications, 1997, 241, 104-111.	1.0	19
131	Prospects for the treatment of drug-resistant malaria parasites. Future Microbiology, 2006, 1, 127-141.	1.0	19
132	A phosphatidylcholineâ€BODIPY 581/591 conjugate allows mapping of oxidative stress in <i>P. falciparum</i> â€infected erythrocytes. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2009, 75A, 390-404.	1.1	19
133	Solution behavior of hematin under acidic conditions and implications for its interactions with chloroquine. Journal of Biological Inorganic Chemistry, 2010, 15, 1009-1022.	1.1	19
134	Design of proteasome inhibitors with oral efficacy in vivo against <i>Plasmodium falciparum</i> and selectivity over the human proteasome. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	19
135	Plasmodium falciparum Histidine-rich Protein-2 (PfHRP2) Modulates the Redox Activity of Ferri-protoporphyrin IX (FePPIX). Journal of Biological Chemistry, 2002, 277, 14514-14520.	1.6	17
136	Plasmodium falciparum metabolic pathways (MPMP) project upgraded with a database of subcellular locations of gene products. Trends in Parasitology, 2011, 27, 285-286.	1.5	17
137	Parasite-Mediated Degradation of Synthetic Ozonide Antimalarials Impacts <i>In Vitro</i> Antimalarial Activity. Antimicrobial Agents and Chemotherapy, 2018, 62, .	1.4	17
138	Essential role of Plasmodium perforin-like protein 4 in ookinete midgut passage. PLoS ONE, 2018, 13, e0201651.	1.1	17
139	Improving the quality of electron tomography image volumes using pre-reconstruction filtering. Journal of Structural Biology, 2012, 180, 132-142.	1.3	16
140	Erythrocyte β spectrin can be genetically targeted to protect mice from malaria. Blood Advances, 2017, 1, 2624-2636.	2.5	16
141	The Metabolite Repair Enzyme Phosphoglycolate Phosphatase Regulates Central Carbon Metabolism and Fosmidomycin Sensitivity in Plasmodium falciparum. MBio, 2019, 10, .	1.8	16
142	Determination of protein subcellular localization in apicomplexan parasites. Trends in Parasitology, 2012, 28, 546-554.	1.5	15
143	Rapid, low dose X-ray diffractive imaging of the malaria parasite Plasmodium falciparum. Ultramicroscopy, 2014, 143, 88-92.	0.8	15
144	A Plasmodium falciparum S33 proline aminopeptidase is associated with changes in erythrocyte deformability. Experimental Parasitology, 2016, 169, 13-21.	0.5	15

#	Article	IF	CITATIONS
145	Biochemical and cellular characterisation of the Plasmodium falciparum M1 alanyl aminopeptidase (PfM1AAP) and M17 leucyl aminopeptidase (PfM17LAP). Scientific Reports, 2021, 11, 2854.	1.6	14
146	Export of Parasite Proteins to the Erythrocyte Cytoplasm: Secretory Machinery and Traffic Signals. Novartis Foundation Symposium, 1999, 226, 157-175.	1.2	14
147	Band 3 mobility in camelid elliptocytes: Implications for erythrocyte shape. Biochemistry, 1993, 32, 6696-6702.	1.2	13
148	Plasmodium falciparum goes bananas for sex. Molecular and Biochemical Parasitology, 2021, 244, 111385.	0.5	13
149	Nonâ€canonical metabolic pathways in the malaria parasite detected by isotopeâ€ŧracing metabolomics. Molecular Systems Biology, 2021, 17, e10023.	3.2	12
150	Characterization of a series of far-red-absorbing thiobarbituric acid oxonol derivatives as fluorescent probes for biological applications. Analytical Biochemistry, 2003, 317, 47-58.	1.1	11
151	Nanocrystallography measurements of early stage synthetic malaria pigment. Journal of Applied Crystallography, 2017, 50, 1533-1540.	1.9	11
152	Dimeric Artesunate Glycerophosphocholine Conjugate Nano-Assemblies as Slow-Release Antimalarials to Overcome Kelch 13 Mutant Artemisinin Resistance. Antimicrobial Agents and Chemotherapy, 2022, 66, e0206521.	1.4	11
153	Purification and kinetic characterisation of human erythrocyte actin. BBA - Proteins and Proteomics, 1984, 790, 46-52.	2.1	10
154	Structure and dynamics of microemulsions which mimic the lipid phase of low-density lipoproteins. Lipids and Lipid Metabolism, 1990, 1042, 42-50.	2.6	10
155	Synergistic interaction of a chloroquine metabolite with chloroquine against drug-resistant malaria parasites. Biochemical Pharmacology, 2004, 67, 1347-1353.	2.0	10
156	Characterization of the Antibody Response against <i>Plasmodium falciparum</i> Erythrocyte Membrane Protein 1 in Human Volunteers. Infection and Immunity, 2007, 75, 5967-5973.	1.0	10
157	Structural organisation of band 3 in Melanesian ovalocytes. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 1993, 1181, 83-89.	1.8	9
158	Chapter 2. Semisynthetic Artemisinin and Synthetic Peroxide Antimalarials. RSC Drug Discovery Series, 2011, , 33-64.	0.2	9
159	A Dynamic Stress Model Explains the Delayed Drug Effect in Artemisinin Treatment of Plasmodium falciparum. Antimicrobial Agents and Chemotherapy, 2017, 61, .	1.4	9
160	A mechanistic model quantifies artemisinin-induced parasite growth retardation in blood-stage Plasmodium falciparum infection. Journal of Theoretical Biology, 2017, 430, 117-127.	0.8	9
161	Local regularization of tilt projections reduces artifacts in electron tomography. Journal of Structural Biology, 2014, 186, 28-37.	1.3	8
162	Violacein-Induced Chaperone System Collapse Underlies Multistage Antiplasmodial Activity. ACS Infectious Diseases, 2021, 7, 759-776.	1.8	8

#	Article	IF	CITATIONS
163	Fresnel coherent diffractive imaging tomography of whole cells in capillaries. New Journal of Physics, 2014, 16, 093012.	1.2	7
164	Cell biological analysis reveals an essential role for Pfcerli2 in erythrocyte invasion by malaria parasites. Communications Biology, 2022, 5, 121.	2.0	7
165	Inhibition of phenylephrine-stimulated gluconeogenesis by chlorpromazine is mediated by α-adrenergic receptors. FEBS Letters, 1981, 126, 313-317.	1.3	6
166	Title is missing!. Journal of Fluorescence, 2001, 11, 1-11.	1.3	6
167	Synthesis of a Far Red Absorbing Thiobarbituric Acid Oxonol Derivative as a Fluorescent Probe for Biological Applications. Synthetic Communications, 2003, 33, 4269-4277.	1.1	3
168	Sensing when it's time for sex. Nature, 2013, 499, 38-39.	13.7	3
169	Ankyrin-1 Gene Exhibits Allelic Heterogeneity in Conferring Protection Against Malaria. G3: Genes, Genomes, Genetics, 2017, 7, 3133-3144.	0.8	3
170	High Throughput Screening to Identify Selective and Nonpeptidomimetic Proteasome Inhibitors As Antimalarials. ACS Infectious Diseases, 2021, 7, 1818-1832.	1.8	3
171	Far-Red Dibenzo[<i>a,j</i>]Perylene-8,16-Dione Dyes as Fluorescent Enzyme Substrates and Tags for Biomolecules. Synthetic Communications, 2000, 30, 803-820.	1.1	2
172	Structured illumination microscopy reveals actin I localization in discreet foci in Plasmodium berghei gametocytes. Experimental Parasitology, 2017, 181, 82-87.	0.5	2
173	Fuzzy Classification of Secretory Signals in Proteins Encoded by the Plasmodium falciparum Genome. Lecture Notes in Computer Science, 2004, , 1023-1029.	1.0	2
174	pH Regulation. , 2013, , 1-11.		2
175	Multimodal imaging reveals membrane skeleton reorganisation during reticulocyte maturation and differences in dimple and rim regions of mature erythrocytes. Journal of Structural Biology: X, 2022, 6, 100056.	0.7	2
176	Solubilization of Native Actin Monomers from Human Erythrocyte Membranes. Australian Journal of Biological Sciences, 1986, 39, 117.	0.5	1
177	What Makes a Malaria Host?. Parasitology Today, 1995, 11, 111-112.	3.1	0
178	An Australian network to support the understanding and control of parasites. Trends in Parasitology, 2006, 22, 97-99.	1.5	0
179	2SDP-01 High resolution imaging of malaria parasites with light, x-rays and electrons(2SDP ASB-BSJ) Tj ETQq1 1 Seibutsu Butsuri, 2013, 53, S99.).784314 0.0	rgBT /Overlo 0
180	Measuring and Modelling Host Cell Subversion by the Malaria Parasite. Biophysical Journal, 2017, 112, 330a.	0.2	0

#	Article	IF	CITATIONS
181	Structure and Function of the Proteasome Activator PA28 of the Malaria Parasite Plasmodium falciparum. Microscopy and Microanalysis, 2019, 25, 1324-1325.	0.2	0