
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2351316/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | A new grand-canonical potential for the thermodynamic description of the reactions in solutions with constant pH. Journal of Molecular Liquids, 2021, 335, 115979.                                                                             | 2.3 | 2         |
| 2  | Estimation of electron absorption spectra and lifetime of the two lowest singlet excited states of pyrimidine nucleobases and their derivatives. Journal of Molecular Structure, 2021, 1250, 131863.                                           | 1.8 | 4         |
| 3  | QM and QM/MM umbrella sampling MD study of the formation of Hg(II)–thymine bond: Model for<br>evaluation of the reaction energy profiles in solutions with constant pH. Journal of Computational<br>Chemistry, 2020, 41, 1509-1520.            | 1.5 | 1         |
| 4  | Zweifel an einem Dogma: Hydrolyse Ã <b>¤</b> uatorialer Liganden von Pt <sup>IV</sup> â€Komplexen unter<br>physiologischen Bedingungen. Angewandte Chemie, 2019, 131, 7542-7547.                                                               | 1.6 | 5         |
| 5  | A Dogma in Doubt: Hydrolysis of Equatorial Ligands of Pt <sup>IV</sup> Complexes under<br>Physiological Conditions. Angewandte Chemie - International Edition, 2019, 58, 7464-7469.                                                            | 7.2 | 46        |
| 6  | Square-Planar Pt(II) and Ir(I) Complexes as the Lewis Bases: Donor–Acceptor Adducts with Group 13<br>Trihalides and Trihydrides. Inorganic Chemistry, 2019, 58, 3616-3626.                                                                     | 1.9 | 10        |
| 7  | Protein environment affects the water–tryptophan binding mode. MD, QM/MM, and NMR studies of engrailed homeodomain mutants. Physical Chemistry Chemical Physics, 2018, 20, 12664-12677.                                                        | 1.3 | 3         |
| 8  | Formation of chelate structure between His-Met dipeptide and diaqua-cisplatin complex; DFT/PCM computational study. Journal of Biological Inorganic Chemistry, 2018, 23, 363-376.                                                              | 1.1 | 3         |
| 9  | Redox Potentials for Tetraplatin, Satraplatin, Its Derivatives, and Ascorbic Acid: A Computational Study. Inorganic Chemistry, 2018, 57, 951-962.                                                                                              | 1.9 | 15        |
| 10 | Interactions of Ascorbic Acid with Satraplatin and its <i>trans</i> Analog JM576: DFT Computational Study. European Journal of Inorganic Chemistry, 2018, 2018, 1481-1491.                                                                     | 1.0 | 6         |
| 11 | Exploration of selected electronic characteristics of half-sandwich organoruthenium(II) β-diketonate<br>complexes. Journal of Molecular Modeling, 2018, 24, 98.                                                                                | 0.8 | 5         |
| 12 | Metal Interactions with Nucleobases, Base Pairs, and Oligomer Sequences; Computational Approach. , 2017, , 1827-1874.                                                                                                                          |     | 1         |
| 13 | Study on electronic properties, thermodynamic and kinetic parameters of the selected platinum(II) derivatives interacting with guanine. Journal of Inorganic Biochemistry, 2017, 172, 100-109.                                                 | 1.5 | 9         |
| 14 | Side Reactions with an Equilibrium Constraint: Detailed Mechanism of the Substitution Reaction of<br>Tetraplatin with dGMP as a Starting Step of the Platinum(IV) Reduction Process. Journal of Physical<br>Chemistry B, 2017, 121, 4400-4413. | 1.2 | 3         |
| 15 | The influence of the metal cations and microhydration on the reaction trajectory of the N3 ↔ O2<br>thymine proton transfer: Quantum mechanical study. Journal of Computational Chemistry, 2017, 38,<br>2680-2692.                              | 1.5 | 4         |
| 16 | Interactions of the "pianoâ€stool―[ruthenium(II)(η <sup>6</sup> â€arene)(quinolone)Cl] <sup>+</sup><br>complexes with water; DFT computational study. Journal of Computational Chemistry, 2016, 37,<br>1766-1780.                              | 1.5 | 3         |
| 17 | International conference on "Modeling Interaction in Biomolecules VIIâ€, held in Prague, 14–18<br>September 2015. Journal of Molecular Modeling, 2016, 22, 1.                                                                                  | 0.8 | 0         |
| 18 | Estimation of Transition-Metal Empirical Parameters for Molecular Mechanical Force Fields. Journal of Chemical Theory and Computation 2016, 12, 3681-3688                                                                                      | 2.3 | 22        |

| #  | Article                                                                                                                                                                                                                                                                               | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Reduction Process of Tetraplatin in the Presence of Deoxyguanosine Monophosphate (dGMP): A<br>Computational DFT Study. Chemistry - A European Journal, 2016, 22, 1037-1047.                                                                                                           | 1.7 | 12        |
| 20 | Metal Interactions with Nucleobases, Base Pairs, and Oligomer Sequences; Computational Approach. , 2016, , 1-48.                                                                                                                                                                      |     | 1         |
| 21 | Reaction mechanism of Ru(II) pianoâ€stool complexes: Umbrella sampling QM/MM MD study. Journal of<br>Computational Chemistry, 2014, 35, 1446-1456.                                                                                                                                    | 1.5 | 20        |
| 22 | The structure of metallo-DNA with consecutive thymine–HgII–thymine base pairs explains positive entropy for the metallo base pair formation. Nucleic Acids Research, 2014, 42, 4094-4099.                                                                                             | 6.5 | 106       |
| 23 | The influence of arene-ring size on stacking interaction with canonical base pairs. Chemical Physics<br>Letters, 2014, 598, 28-34.                                                                                                                                                    | 1.2 | 4         |
| 24 | The IR and Raman spectra of polyaniline adsorbed on the glass surface; comparison of experimental,<br>empirical force field, and quantum chemical results. European Polymer Journal, 2014, 57, 47-57.                                                                                 | 2.6 | 24        |
| 25 | A double-QM/MM method for investigating donor–acceptor electron-transfer reactions in solution.<br>Physical Chemistry Chemical Physics, 2014, 16, 19530-19539.                                                                                                                        | 1.3 | 14        |
| 26 | Energy transfer in aggregates of bacteriochlorophyll c self-assembled with azulene derivatives.<br>Physical Chemistry Chemical Physics, 2014, 16, 16755-16764.                                                                                                                        | 1.3 | 15        |
| 27 | Can Satraplatin be hydrated before the reduction process occurs? The DFT computational study.<br>Journal of Molecular Modeling, 2013, 19, 4669-4680.                                                                                                                                  | 0.8 | 12        |
| 28 | International conference on "Modeling interaction in biomolecules 2011â€; in Kutná Hora, September<br>4th–9th, 2011. Journal of Molecular Modeling, 2013, 19, 4627-4627.                                                                                                              | 0.8 | 0         |
| 29 | NMR spectroscopic detection of chirality and enantiopurity in referenced systems without formation of diastereomers. Nature Communications, 2013, 4, 2188.                                                                                                                            | 5.8 | 103       |
| 30 | Mechanism of the<br><i>cis</i> -[Pt(1 <i>R</i> ,2 <i>R</i> -DACH)(H <sub>2</sub> 0) <sub>2</sub> ] <sup>2+</sup> Intrastrand<br>Binding to the Double-Stranded (pGpG)·(CpC) Dinucleotide in Aqueous Solution: A Computational DFT<br>Study. Inorganic Chemistry, 2013, 52, 5801-5813. | 1.9 | 14        |
| 31 | Formation of a Thymineâ€Hg <sup>II</sup> â€Thymine Metalâ€Mediated DNA Base Pair: Proposal and<br>Theoretical Calculation of the Reaction Pathway. Chemistry - A European Journal, 2013, 19, 9884-9894.                                                                               | 1.7 | 45        |
| 32 | Exploration of various electronic properties along the reaction coordinate for hydration of Pt(II)<br>and Ru(II) complexes; the CCSD, MPx, and DFT computational study. Journal of Molecular Modeling,<br>2013, 19, 5245-5255.                                                        | 0.8 | 4         |
| 33 | Exploring the potential energy surface for interaction of a trichloro(diethylenetriamine)gold(III)<br>complex with strong nucleophiles. Chemical Physics Letters, 2012, 548, 64-70.                                                                                                   | 1.2 | 14        |
| 34 | Colorimetric detection of trace water in tetrahydrofuran using N,N′-substituted oxoporphyrinogens.<br>Chemical Communications, 2012, 48, 3933.                                                                                                                                        | 2.2 | 45        |
| 35 | Exploring the Potential Energy Surface for the Interaction of Sterically Hindered<br>Trichloro(diethylenetriamine)gold(III) Complexes with Water. Journal of Physical Chemistry A, 2012,<br>116, 11015-11024.                                                                         | 1.1 | 14        |
| 36 | Reactions of cisplatin and glycine in solution with constant pH: a computational study. Physical<br>Chemistry Chemical Physics, 2012, 14, 12571.                                                                                                                                      | 1.3 | 9         |

| #  | Article                                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Binding of pianoâ€stool Ru(II) complexes to DNA; QM/MM study. Journal of Computational Chemistry, 2012, 33, 2092-2101.                                                                                                                      | 1.5 | 24        |
| 38 | Structure and stability of kaolinite/TiO2 nanocomposite: DFT and MM computations. Journal of Molecular Modeling, 2012, 18, 2689-2698.                                                                                                       | 0.8 | 22        |
| 39 | Anthracyclines and ellipticines as DNA-damaging anticancer drugs: Recent advances. , 2012, 133, 26-39.                                                                                                                                      |     | 125       |
| 40 | Comparison of hydration reactions for "piano-stool―RAPTA-B and [Ru(η6â^' arene)(en)Cl]+ complexes:<br>Density functional theory computational study. Journal of Chemical Physics, 2011, 134, 024520.                                        | 1.2 | 15        |
| 41 | Exploring a Reaction Mechanism for Acetato Ligand Replacement in Paddlewheel<br>Tetrakisacetatodirhodium (II,II) Complex by Ammonia: Computational Density Functional Theory Study.<br>Journal of Physical Chemistry A, 2011, 115, 784-794. | 1.1 | 6         |
| 42 | Activation of the cisplatin and transplatin complexes in solution with constant pH and<br>concentration of chloride anions; quantum chemical study. Journal of Molecular Modeling, 2011, 17,<br>2385-2393.                                  | 0.8 | 31        |
| 43 | Cisplatin interaction with amino acids cysteine and methionine from gas phase to solutions with constant pH. Interdisciplinary Sciences, Computational Life Sciences, 2010, 2, 98-114.                                                      | 2.2 | 12        |
| 44 | Reactions of cisplatin with cysteine and methionine at constant pH; a computational study. Dalton<br>Transactions, 2010, 39, 1295-1301.                                                                                                     | 1.6 | 28        |
| 45 | Charge-scaled cavities in polarizable continuum model: Determination of acid dissociation constants for platinum-amino acid complexes. Journal of Chemical Physics, 2009, 131, 135101.                                                      | 1.2 | 24        |
| 46 | Interactions of the "pianoâ€stool―[ruthenium(II) (η <sup>6</sup> â€arene)(en)CL] <sup>+</sup> complexes<br>with water and nucleobases; ab initio and DFT study. Journal of Computational Chemistry, 2009, 30,<br>1758-1770.                 | 1.5 | 34        |
| 47 | Reaction Force Analysis of Solvent Effects in the Addition of HCl to Propene. Journal of Physical Chemistry A, 2009, 113, 6500-6503.                                                                                                        | 1.1 | 32        |
| 48 | Cisplatin Interaction with Cysteine and Methionine in Aqueous Solution: Computational DFT/PCM<br>Study. Journal of Physical Chemistry B, 2009, 113, 3139-3150.                                                                              | 1.2 | 65        |
| 49 | Comparison of the electronic properties, and thermodynamic and kinetic parameters of the aquation of selected platinum(II) derivatives with their anticancer IC50 indexes. Journal of Molecular Modeling, 2008, 14, 705-716.                | 0.8 | 21        |
| 50 | The trans effect in squareâ€planar platinum(II) complexes—A density functional study. Journal of<br>Computational Chemistry, 2008, 29, 2370-2381.                                                                                           | 1.5 | 69        |
| 51 | A computational study on DNA bases interactions with dinuclear tetraacetato-diaqua-dirhodium(II,II)<br>complex. Journal of Inorganic Biochemistry, 2008, 102, 53-62.                                                                        | 1.5 | 15        |
| 52 | Computational study of redox active centres of blue copper proteins: a computational DFT study.<br>Molecular Physics, 2008, 106, 2733-2748.                                                                                                 | 0.8 | 14        |
| 53 | Theoretical Study of Hydrated Copper(II) Interactions with Guanine:  A Computational Density<br>Functional Theory Study. Journal of Physical Chemistry A, 2008, 112, 256-267.                                                               | 1.1 | 31        |
| 54 | Computational Study on Spectral Properties of the Selected Pigments from Various Photosystems:Â<br>Structureâ^'Transition Energy Relationship. Journal of Physical Chemistry A, 2007, 111, 5864-5878.                                       | 1.1 | 26        |

| #  | Article                                                                                                                                                                                                                                  | IF               | CITATIONS    |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------|
| 55 | Reaction Force Decomposition of Activation Barriers To Elucidate Solvent Effects. Journal of Physical Chemistry A, 2007, 111, 2455-2457.                                                                                                 | 1.1              | 71           |
| 56 | Pt-bridges in various single-strand and double-helix DNA sequences. DFT and MP2 study of the cisplatin coordination with guanine, adenine, and cytosine. Journal of Molecular Modeling, 2007, 13, 367-379.                               | 0.8              | 20           |
| 57 | International conference and workshop: Modeling and Design of Molecular Materials (10–15) Tj ETQq1 1 0.78                                                                                                                                | 4314 rgBT<br>0.8 | Voverlock 10 |
| 58 | Can the pH value of water solutions be estimated by quantum chemical calculations of small water clusters?. Journal of Chemical Physics, 2006, 125, 194518.                                                                              | 1.2              | 19           |
| 59 | Copper Cation Interactions with Biologically Essential Types of Ligands:Â A Computational DFT Study.<br>Journal of Physical Chemistry A, 2006, 110, 4795-4809.                                                                           | 1.1              | 40           |
| 60 | Analysis of the Reaction Force for a Gas Phase SN2 Process: CH3Cl + H2O → CH3OH + HClâ€. Journal of<br>Physical Chemistry A, 2006, 110, 756-761.                                                                                         | 1.1              | 59           |
| 61 | Theoretical Study of Interaction of Urate with Li+, Na+, K+, Be2+, Mg2+, and Ca2+Metal Cations.<br>Journal of Physical Chemistry A, 2006, 110, 6139-6144.                                                                                | 1.1              | 24           |
| 62 | Towards the Elucidation of the Activation of Cisplatin in Anticancer Treatment. Computational Chemistry - Reviews of Current Trends, 2006, , 265-321.                                                                                    | 0.4              | 2            |
| 63 | Cisplatin interaction with cysteine and methionine, a theoretical DFT study. Journal of Inorganic<br>Biochemistry, 2005, 99, 2184-2196.                                                                                                  | 1.5              | 81           |
| 64 | Theoretical description of copper Cu(I)/Cu(II) complexes in mixed ammine-aqua environment. DFT and ab<br>initio quantum chemical study. Chemical Physics, 2005, 312, 193-204.                                                            | 0.9              | 62           |
| 65 | Study of electronic spectra of free-base porphin and Mg-porphin: Comprehensive comparison of variety ofab initio, DFT, and semiempirical methods. Journal of Computational Chemistry, 2005, 26, 294-303.                                 | 1.5              | 18           |
| 66 | Hydration process as an activation of trans- and cisplatin complexes in anticancer treatment. DFT<br>andab initio computational study of thermodynamic and kinetic parameters. Journal of Computational<br>Chemistry, 2005, 26, 907-914. | 1.5              | 88           |
| 67 | Theoretical model of the aqua-copper [Cu(H2O)5]+cation interactions with guanine. Journal of Molecular Modeling, 2005, 11, 362-369.                                                                                                      | 0.8              | 14           |
| 68 | The international workshop "Modeling & Design of Molecular Materialsâ€; held 16–20 September 2004<br>in WrocÅ,aw. Journal of Molecular Modeling, 2005, 11, 257-257.                                                                      | 0.8              | 2            |
| 69 | Estimation of Electron Spectra Transitions of Free-Based Porphin and Mg-Porphin Using Various<br>Quantum Chemical Approaches. International Journal of Molecular Sciences, 2004, 5, 196-213.                                             | 1.8              | 10           |
| 70 | Activation barriers and rate constants for hydration of platinum and palladium square-planar complexes: An ab initio study. Journal of Chemical Physics, 2004, 120, 1253-1262.                                                           | 1.2              | 73           |
| 71 | Theoretical model of copper Cu(I)/Cu(II) hydration. DFT and ab initio quantum chemical study.<br>Computational and Theoretical Chemistry, 2004, 683, 183-193.                                                                            | 1.5              | 67           |
| 72 | The influence of a sugar-phosphate backbone on the cisplatin-bridged BpB? models of DNA purine bases.<br>Quantum chemical calculations of Pt(ii) bonding characteristics. Physical Chemistry Chemical<br>Physics, 2004, 6, 3585.         | 1.3              | 46           |

| #  | Article                                                                                                                                                                                                                                                                                                                                              | IF                | CITATIONS           |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------------|
| 73 | The Influence of N7Guanine Modifications on the Strength of Watsonâ °Crick Base Pairing and Guanine<br>N1Acidity:Â Comparison of Gas-Phase and Condensed-Phase Trends. Journal of Physical Chemistry B,<br>2003, 107, 5349-5356.                                                                                                                     | 1.2               | 49                  |
| 74 | How Strong Can the Bend Be on a DNA Helix from Cisplatin? DFT and MP2 Quantum Chemical Calculations of Cisplatin-Bridged DNA Purine Bases. Inorganic Chemistry, 2003, 42, 7162-7172.                                                                                                                                                                 | 1.9               | 71                  |
| 75 | Density functional study of structural and electronic properties of bimetallic silver–gold clusters:<br>Comparison with pure gold and silver clusters. Journal of Chemical Physics, 2002, 117, 3120-3131.                                                                                                                                            | 1.2               | 305                 |
| 76 | Raman spectroscopy study of acid-base and structural properties of<br>9-[2-(phosphonomethoxy)ethyl]adenine in aqueous solutions. Biopolymers, 2002, 67, 285-288.                                                                                                                                                                                     | 1.2               | 5                   |
| 77 | The influence of square planar platinum complexes on DNA base pairing. An ab initio DFT study.<br>Physical Chemistry Chemical Physics, 2001, 3, 4404-4411.                                                                                                                                                                                           | 1.3               | 48                  |
| 78 | A Systematic ab Initio Study of the Hydration of Selected Palladium Square-Planar Complexes. A<br>Comparison with Platinum Analogues. Journal of Physical Chemistry A, 2001, 105, 8086-8092.                                                                                                                                                         | 1.1               | 53                  |
| 79 | An ab initio quantum chemical study of reactions of hexano-6-lactam peroxy radicals with phenoxy or diphenyl radicals. Polymer Degradation and Stability, 2001, 74, 569-577.                                                                                                                                                                         | 2.7               | 3                   |
| 80 | The interactions of square platinum(II) complexes with guanine and adenine: a quantum-chemical ab initio study of metalated tautomeric forms. Journal of Biological Inorganic Chemistry, 2000, 5, 178-188.                                                                                                                                           | 1.1               | 64                  |
| 81 | Hydration of cis- and trans-platin: A pseudopotential treatment in the frame of a G3-type theory for platinum complexes. Journal of Chemical Physics, 2000, 113, 2224-2232.                                                                                                                                                                          | 1.2               | 94                  |
| 82 | Interactions of Hydrated IIa and IIb Group Metal Cations with Thioguanine-Cytosine DNA Base Pair: Ab<br>initio and Density Functional Theory Investigation of Polarization Effects, Differences Among<br>Cations, and Flexibility of the Cation Hydration Shell. Journal of Biomolecular Structure and<br>Dynamics, 1999, 17, 61-77.                 | 2.0               | 44                  |
| 83 | Metal ions in non-complementary DNA base pairs: an ab initio study of Cu(I), Ag(I), and Au(I) complexes<br>with the cytosine-adenine base pair. Journal of Biological Inorganic Chemistry, 1999, 4, 537-545.                                                                                                                                         | 1.1               | 73                  |
| 84 | Modelling of Aniline-Vermiculite and Tetramethylammonium-Vermiculite; Test of Force Fields. Journal of Molecular Modeling, 1999, 5, 8-16.                                                                                                                                                                                                            | 0.8               | 16                  |
| 85 | Interaction of the Adenineâ^'Thymine Watsonâ^'Crick and Adenineâ^'Adenine Reverse-Hoogsteen DNA Base<br>Pairs with Hydrated Group IIa (Mg2+, Ca2+, Sr2+, Ba2+) and IIb (Zn2+, Cd2+, Hg2+) Metal Cations:Â<br>Absence of the Base Pair Stabilization by Metal-Induced Polarization Effects. Journal of Physical<br>Chemistry B. 1999. 103. 2528-2534. | 1.2               | 102                 |
| 86 | (HX)2 species (X=F through At) in the groups of the periodic system:. Chemical Physics Letters, 1998, 288, 20-24.                                                                                                                                                                                                                                    | 1.2               | 12                  |
| 87 | Chemical bonds between noble metals and noble gases Chemical Physics Letters, 1998, 288, 635-641.                                                                                                                                                                                                                                                    | 1.2               | 36                  |
| 88 | A quantum chemical ab initio study of the interaction between Co+ and Ni+ ions with CO2 and N2O.<br>Chemical Physics, 1998, 230, 13-22.                                                                                                                                                                                                              | 0.9               | 6                   |
| 89 | Stabilization of the Purine•Purine•Pyrimidine DNA Base Triplets by Divalent Metal Cations. Journal of<br>Biomolecular Structure and Dynamics, 1998, 16, 139-143.                                                                                                                                                                                     | 2.0               | 48                  |
| 90 | Interaction between the Guanineâ^'Cytosine Watsonâ^'Crick DNA Base Pair and Hydrated Group IIa (Mg2+,) Tj E                                                                                                                                                                                                                                          | TQq0 0 0 r<br>1.1 | gBT /Overloc<br>171 |

<sup>102, 5951-5957.</sup> 

JAROSLAV V BURDA

| #   | Article                                                                                                                                                                                                                                                       | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Hydrogen-bonded Trimers of DNA Bases and their Interaction with Metal Cations: Ab initio<br>Quantum-chemical and Empirical Potential Study. Journal of Biomolecular Structure and Dynamics,<br>1997, 14, 613-628.                                             | 2.0 | 72        |
| 92  | Interaction of DNA Base Pairs with Various Metal Cations (Mg2+, Ca2+, Sr2+, Ba2+, Cu+, Ag+, Au+, Zn2+,) Tj ETQ                                                                                                                                                |     |           |
|     | Interaction. Journal of Physical Chemistry B, 1997, 101, 9670-9677.                                                                                                                                                                                           | 1.2 | 222       |
| 93  | Ab Initio Study of the Interaction of Guanine and Adenine with Various Mono- and Bivalent Metal<br>Cations (Li+, Na+, K+, Rb+, Cs+; Cu+, Ag+, Au+; Mg2+, Ca2+, Sr2+, Ba2+; Zn2+, Cd2+, and Hg2+). The<br>Journal of Physical Chemistry, 1996, 100, 7250-7255. | 2.9 | 214       |
| 94  | Theoretical Study of Thermal Dehydrochlorination of Poly(vinyl chloride) Initiated by Tertiary<br>Chlorine Groupings. Collection of Czechoslovak Chemical Communications, 1995, 60, 1303-1309.                                                                | 1.0 | 4         |
| 95  | Quantum Chemical Study of Thermal Dehydrochlorination of Poly(vinyl chloride) Containing<br>Aldehyde Groups. Collection of Czechoslovak Chemical Communications, 1995, 60, 1310-1315.                                                                         | 1.0 | 0         |
| 96  | Dehydrochlorination of Poly(vinyl chloride) in Isotactic Systems. Collection of Czechoslovak<br>Chemical Communications, 1993, 58, 343-353.                                                                                                                   | 1.0 | 3         |
| 97  | Oxidizability and Structure of Lactams. Collection of Czechoslovak Chemical Communications, 1993, 58, 354-364.                                                                                                                                                | 1.0 | 1         |
| 98  | Thermal Dehydrochlorination of Poly(vinyl chloride) in Syndiotactic Systems. Collection of Czechoslovak Chemical Communications, 1992, 57, 93-106.                                                                                                            | 1.0 | 2         |
| 99  | The Effect of Cluster Size on the Characteristics of Chemisorption in the Model Growth of Silicon Crystals. Collection of Czechoslovak Chemical Communications, 1992, 57, 241-247.                                                                            | 1.0 | 1         |
| 100 | Interactions of the SiHxCly Silicon Species with the Si4H9 Cluster. Collection of Czechoslovak<br>Chemical Communications, 1992, 57, 248-254.                                                                                                                 | 1.0 | 0         |