Howard B Eichenbaum

List of Publications by Citations

Source: https://exaly.com/author-pdf/2351033/howard-b-eichenbaum-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

169 papers

26,465 citations

82 h-index 162 g-index

277 ext. papers

30,612 ext. citations

avg, IF

7.79 L-index

#	Paper	IF	Citations
169	The medial temporal lobe and recognition memory. <i>Annual Review of Neuroscience</i> , 2007 , 30, 123-52	17	1830
168	A cortical-hippocampal system for declarative memory. <i>Nature Reviews Neuroscience</i> , 2000 , 1, 41-50	13.5	1195
167	Hippocampus: cognitive processes and neural representations that underlie declarative memory. <i>Neuron</i> , 2004 , 44, 109-20	13.9	1025
166	Two functional components of the hippocampal memory system. <i>Behavioral and Brain Sciences</i> , 1994 , 17, 449-472	0.9	974
165	The hippocampus, memory, and place cells: is it spatial memory or a memory space?. <i>Neuron</i> , 1999 , 23, 209-26	13.9	778
164	The hippocampuswhat does it do?. Behavioral and Neural Biology, 1992, 57, 2-36		730
163	Interplay of hippocampus and prefrontal cortex in memory. <i>Current Biology</i> , 2013 , 23, R764-73	6.3	722
162	Measuring phase-amplitude coupling between neuronal oscillations of different frequencies. Journal of Neurophysiology, 2010 , 104, 1195-210	3.2	668
161	Hippocampal neurons encode information about different types of memory episodes occurring in the same location. <i>Neuron</i> , 2000 , 27, 623-33	13.9	666
160	Hippocampal "time cells" bridge the gap in memory for discontiguous events. <i>Neuron</i> , 2011 , 71, 737-49	13.9	664
159	Critical role of the hippocampus in memory for sequences of events. <i>Nature Neuroscience</i> , 2002 , 5, 458-	62 5.5	649
158	Theta-gamma coupling increases during the learning of item-context associations. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2009 , 106, 20942-7	11.5	587
157	The global record of memory in hippocampal neuronal activity. <i>Nature</i> , 1999 , 397, 613-6	50.4	534
156	The hippocampus as an associator of discontiguous events. <i>Trends in Neurosciences</i> , 1998 , 21, 317-23	13.3	405
155	Recollection-like memory retrieval in rats is dependent on the hippocampus. <i>Nature</i> , 2004 , 431, 188-91	50.4	384
154	Time cells in the hippocampus: a new dimension for mapping memories. <i>Nature Reviews Neuroscience</i> , 2014 , 15, 732-44	13.5	370
153	Can we reconcile the declarative memory and spatial navigation views on hippocampal function?. <i>Neuron</i> , 2014 , 83, 764-70	13.9	365

152	The episodic memory system: neurocircuitry and disorders. <i>Neuropsychopharmacology</i> , 2010 , 35, 86-104	4 8.7	362
151	The hippocampus and mechanisms of declarative memory. <i>Behavioural Brain Research</i> , 1999 , 103, 123-3	333.4	338
150	The hippocampus and declarative memory: cognitive mechanisms and neural codes. <i>Behavioural Brain Research</i> , 2001 , 127, 199-207	3.4	333
149	Complementary roles of the orbital prefrontal cortex and the perirhinal-entorhinal cortices in an odor-guided delayed-nonmatching-to-sample task <i>Behavioral Neuroscience</i> , 1992 , 106, 762-775	2.1	329
148	Prefrontal-hippocampal interactions in episodic memory. <i>Nature Reviews Neuroscience</i> , 2017 , 18, 547-5	5& 3.5	327
147	Declarative memory: insights from cognitive neurobiology. <i>Annual Review of Psychology</i> , 1997 , 48, 547-	72 6.1	303
146	Hippocampal "time cells": time versus path integration. <i>Neuron</i> , 2013 , 78, 1090-101	13.9	302
145	Memory representation within the parahippocampal region. <i>Journal of Neuroscience</i> , 1997 , 17, 5183-95	6.6	286
144	Gradual changes in hippocampal activity support remembering the order of events. <i>Neuron</i> , 2007 , 56, 530-40	13.9	271
143	Robust conjunctive item-place coding by hippocampal neurons parallels learning what happens where. <i>Journal of Neuroscience</i> , 2009 , 29, 9918-29	6.6	263
142	Hippocampal system dysfunction and odor discrimination learning in rats: Impairment of facilitation depending on representational demands <i>Behavioral Neuroscience</i> , 1988 , 102, 331-339	2.1	263
141	Cues that hippocampal place cells encode: dynamic and hierarchical representation of local and distal stimuli. <i>Hippocampus</i> , 1997 , 7, 624-42	3.5	247
140	Towards a functional organization of episodic memory in the medial temporal lobe. <i>Neuroscience and Biobehavioral Reviews</i> , 2012 , 36, 1597-608	9	241
139	Hippocampal representation of related and opposing memories develop within distinct, hierarchically organized neural schemas. <i>Neuron</i> , 2014 , 83, 202-15	13.9	236
138	Neurocognitive aging: prior memories hinder new hippocampal encoding. <i>Trends in Neurosciences</i> , 2006 , 29, 662-70	13.3	236
137	Consolidation and reconsolidation: two lives of memories?. <i>Neuron</i> , 2011 , 71, 224-33	13.9	226
136	Evolution of declarative memory. <i>Hippocampus</i> , 2006 , 16, 795-808	3.5	223
135	Selective damage to the hippocampal region blocks long-term retention of a natural and nonspatial stimulus-stimulus association. <i>Hippocampus</i> , 1995 , 5, 546-56	3.5	221

134	Hippocampal mechanisms for the context-dependent retrieval of episodes. <i>Neural Networks</i> , 2005 , 18, 1172-90	9.1	217
133	The hippocampus and disambiguation of overlapping sequences. <i>Journal of Neuroscience</i> , 2002 , 22, 57	'60686	215
132	On the Integration of Space, Time, and Memory. <i>Neuron</i> , 2017 , 95, 1007-1018	13.9	212
131	Neuronal activity in the hippocampus during delayed non-match to sample performance in rats: evidence for hippocampal processing in recognition memory. <i>Hippocampus</i> , 1992 , 2, 323-34	3.5	198
130	Age-associated alterations of hippocampal place cells are subregion specific. <i>Journal of Neuroscience</i> , 2005 , 25, 6877-86	6.6	196
129	Distinct hippocampal time cell sequences represent odor memories in immobilized rats. <i>Journal of Neuroscience</i> , 2013 , 33, 14607-16	6.6	191
128	The hippocampus and memory for "what," "where," and "when". <i>Learning and Memory</i> , 2004 , 11, 397-4	105 2.8	185
127	Viewpoints: how the hippocampus contributes to memory, navigation and cognition. <i>Nature Neuroscience</i> , 2017 , 20, 1434-1447	25.5	182
126	Critical role of the parahippocampal region for paired-associate learning in rats <i>Behavioral Neuroscience</i> , 1993 , 107, 740-747	2.1	175
125	Memory and Space: Towards an Understanding of the Cognitive Map. <i>Journal of Neuroscience</i> , 2015 , 35, 13904-11	6.6	163
124	A cognitive map for object memory in the hippocampus. Learning and Memory, 2009, 16, 616-24	2.8	163
123	Hippocampus as a memory map: synaptic plasticity and memory encoding by hippocampal neurons. <i>Hippocampus</i> , 1999 , 9, 365-84	3.5	163
122	Abnormal hippocampal spatial representations in alphaCaMKIIT286A and CREBalphaDelta- mice. <i>Science</i> , 1998 , 279, 867-9	33.3	160
121	Neurotoxic hippocampal lesions have no effect on odor span and little effect on odor recognition memory but produce significant impairments on spatial span, recognition, and alternation. <i>Journal of Neuroscience</i> , 2000 , 20, 2964-77	6.6	153
120	Memory on time. <i>Trends in Cognitive Sciences</i> , 2013 , 17, 81-8	14	151
119	Towards a functional organization of the medial temporal lobe memory system: role of the parahippocampal and medial entorhinal cortical areas. <i>Hippocampus</i> , 2008 , 18, 1314-24	3.5	150
118	Recognition memory: opposite effects of hippocampal damage on recollection and familiarity. <i>Nature Neuroscience</i> , 2008 , 11, 16-8	25.5	147
117	Entorhinal cortex lesions disrupt the relational organization of memory in monkeys. <i>Journal of Neuroscience</i> , 2004 , 24, 9811-25	6.6	144

(2010-2015)

116	During Running in Place, Grid Cells Integrate Elapsed Time and Distance Run. <i>Neuron</i> , 2015 , 88, 578-89	13.9	143
115	Brain aging: changes in the nature of information coding by the hippocampus. <i>Journal of Neuroscience</i> , 1997 , 17, 5155-66	6.6	142
114	The hippocampal system and declarative memory in animals. <i>Journal of Cognitive Neuroscience</i> , 1992 , 4, 217-31	3.1	140
113	Is the rodent hippocampus just for 'place'?. Current Opinion in Neurobiology, 1996, 6, 187-95	7.6	138
112	The role of the hippocampus in navigation is memory. <i>Journal of Neurophysiology</i> , 2017 , 117, 1785-1796	5 3.2	137
111	Gradual translocation of spatial correlates of neuronal firing in the hippocampus toward prospective reward locations. <i>Neuron</i> , 2006 , 51, 639-50	13.9	124
110	The neurophysiology of memory. Annals of the New York Academy of Sciences, 2000, 911, 175-91	6.5	120
109	Discordance of spatial representation in ensembles of hippocampal place cells. <i>Hippocampus</i> , 1997 , 7, 613-23	3.5	119
108	Bidirectional prefrontal-hippocampal interactions support context-guided memory. <i>Nature Neuroscience</i> , 2016 , 19, 992-4	25.5	117
107	Ventral hippocampal neurons are shaped by experience to represent behaviorally relevant contexts. <i>Journal of Neuroscience</i> , 2013 , 33, 8079-87	6.6	116
106	Memory for the order of events in specific sequences: contributions of the hippocampus and medial prefrontal cortex. <i>Journal of Neuroscience</i> , 2011 , 31, 3169-75	6.6	113
105	Transitive inference in schizophrenia: impairments in relational memory organization. <i>Schizophrenia Research</i> , 2004 , 68, 235-47	3.6	112
104	A unified mathematical framework for coding time, space, and sequences in the hippocampal region. <i>Journal of Neuroscience</i> , 2014 , 34, 4692-707	6.6	111
103	Memory: Organization and Control. <i>Annual Review of Psychology</i> , 2017 , 68, 19-45	26.1	111
102	On the Binding of Associations in Memory: Clues From Studies on the Role of the Hippocampal Region in Paired-Associate Learning. <i>Current Directions in Psychological Science</i> , 1995 , 4, 19-23	6.5	109
101	Hippocampal CA1 spiking during encoding and retrieval: relation to theta phase. <i>Neurobiology of Learning and Memory</i> , 2007 , 87, 9-20	3.1	108
100	Brain aging: impaired coding of novel environmental cues. <i>Journal of Neuroscience</i> , 1997 , 17, 5167-74	6.6	106
99	Distinct contributions of the hippocampus and medial prefrontal cortex to the "what-where-when" components of episodic-like memory in mice. <i>Behavioural Brain Research</i> , 2010 , 215, 318-25	3.4	104

98	Thinking about brain cell assemblies. <i>Science</i> , 1993 , 261, 993-4	33.3	104
97	Vasopressin 1b receptor knock-out impairs memory for temporal order. <i>Journal of Neuroscience</i> , 2009 , 29, 2676-83	6.6	102
96	Time Cells in Hippocampal Area CA3. <i>Journal of Neuroscience</i> , 2016 , 36, 7476-84	6.6	98
95	The hippocampus, time, and memory across scales. <i>Journal of Experimental Psychology: General</i> , 2013 , 142, 1211-30	4.7	97
94	Relational learning with and without awareness: transitive inference using nonverbal stimuli in humans. <i>Memory and Cognition</i> , 2001 , 29, 893-902	2.2	95
93	Distinct roles for dorsal CA3 and CA1 in memory for sequential nonspatial events. <i>Learning and Memory</i> , 2010 , 17, 12-17	2.8	88
92	Learning causes reorganization of neuronal firing patterns to represent related experiences within a hippocampal schema. <i>Journal of Neuroscience</i> , 2013 , 33, 10243-56	6.6	87
91	The role of CA3 hippocampal NMDA receptors in paired associate learning. <i>Journal of Neuroscience</i> , 2006 , 26, 908-15	6.6	87
90	Spatial representations of hippocampal CA1 neurons are modulated by behavioral context in a hippocampus-dependent memory task. <i>Journal of Neuroscience</i> , 2007 , 27, 2416-23	6.6	86
89	The Same Hippocampal CA1 Population Simultaneously Codes Temporal Information over Multiple Timescales. <i>Current Biology</i> , 2018 , 28, 1499-1508.e4	6.3	84
88	Distinct pathways for rule-based retrieval and spatial mapping of memory representations in hippocampal neurons. <i>Journal of Neuroscience</i> , 2013 , 33, 1002-13	6.6	83
87	Cognitive aging and the hippocampus: how old rats represent new environments. <i>Journal of Neuroscience</i> , 2004 , 24, 3870-8	6.6	80
86	Striatal versus hippocampal representations during win-stay maze performance. <i>Journal of Neurophysiology</i> , 2009 , 101, 1575-87	3.2	79
85	Hippocampus: mapping or memory?. <i>Current Biology</i> , 2000 , 10, R785-7	6.3	79
84	Complementary Functional Organization of Neuronal Activity Patterns in the Perirhinal, Lateral Entorhinal, and Medial Entorhinal Cortices. <i>Journal of Neuroscience</i> , 2016 , 36, 3660-75	6.6	78
83	Cognitive aging: a common decline of episodic recollection and spatial memory in rats. <i>Journal of Neuroscience</i> , 2008 , 28, 8945-54	6.6	77
82	Medial prefrontal cortex supports recollection, but not familiarity, in the rat. <i>Journal of Neuroscience</i> , 2008 , 28, 13428-34	6.6	77
81	Time and space in the hippocampus. <i>Brain Research</i> , 2015 , 1621, 345-54	3.7	76

(2003-2005)

80	Episodic recollection in animals: If it walks like a duck and quacks like a duck \(\precedel Learning \) and Motivation, 2005 , 36, 190-207	1.3	73	
79	Cholinergic system regulation of spatial representation by the hippocampus. <i>Hippocampus</i> , 2002 , 12, 386-97	3.5	72	
78	The hippocampus and transverse patterning guided by olfactory cues <i>Behavioral Neuroscience</i> , 1998 , 112, 762-771	2.1	69	
77	Disambiguation of overlapping experiences by neurons in the medial entorhinal cortex. <i>Journal of Neuroscience</i> , 2007 , 27, 5787-95	6.6	68	
76	Differential effects of damage within the hippocampal region on memory for a natural, nonspatial Odor-Odor Association. <i>Learning and Memory</i> , 2001 , 8, 79-86	2.8	65	
75	Medial Entorhinal Cortex Selectively Supports Temporal Coding by Hippocampal Neurons. <i>Neuron</i> , 2017 , 94, 677-688.e6	13.9	64	
74	The neurobiology of memory based predictions. <i>Philosophical Transactions of the Royal Society B: Biological Sciences</i> , 2009 , 364, 1183-91	5.8	64	
73	Orbitofrontal cortex encodes memories within value-based schemas and represents contexts that guide memory retrieval. <i>Journal of Neuroscience</i> , 2015 , 35, 8333-44	6.6	58	
72	Remembering: functional organization of the declarative memory system. <i>Current Biology</i> , 2006 , 16, R643-5	6.3	56	
71	Bridging the gap between brain and behavior: cognitive and neural mechanisms of episodic memory. <i>Journal of the Experimental Analysis of Behavior</i> , 2005 , 84, 619-29	2.1	53	
70	Hippocampal formation lesions impair performance in an odor-odor association task independently of spatial context. <i>Neurobiology of Learning and Memory</i> , 2002 , 78, 470-6	3.1	51	
69	Prefrontal cortex: role in acquisition of overlapping associations and transitive inference. <i>Learning and Memory</i> , 2010 , 17, 161-7	2.8	47	
68	What H.M. taught us. <i>Journal of Cognitive Neuroscience</i> , 2013 , 25, 14-21	3.1	46	
67	Essential role of the hippocampal formation in rapid learning of higher-order sequential associations. <i>Journal of Neuroscience</i> , 2006 , 26, 4111-7	6.6	46	
66	Positional firing properties of perirhinal cortex neurons. <i>NeuroReport</i> , 1998 , 9, 3013-8	1.7	44	
65	Selective lesions of basal forebrain cholinergic neurons produce anterograde and retrograde deficits in a social transmission of food preference task in rats. <i>European Journal of Neuroscience</i> , 2002 , 16, 983-98	3.5	43	
64	Hippocampal Place Fields Maintain a Coherent and Flexible Map across Long Timescales. <i>Current Biology</i> , 2018 , 28, 3578-3588.e6	6.3	42	
63	Episodic Memory and the Hippocampus: It's About Time. <i>Current Directions in Psychological Science</i> , 2003 , 12, 53-57	6.5	41	

62	Amygdala lesions selectively impair familiarity in recognition memory. <i>Nature Neuroscience</i> , 2011 , 14, 1416-7	25.5	40
61	Individual differences in neurocognitive aging of the medial temporal lobe. <i>Age</i> , 2006 , 28, 221-33		39
60	The hippocampus contributes to memory expression during transitive inference in mice. <i>Hippocampus</i> , 2010 , 20, 208-17	3.5	37
59	How does the hippocampus contribute to memory?. <i>Trends in Cognitive Sciences</i> , 2003 , 7, 427-9	14	37
58	Barlow versus Hebb: When is it time to abandon the notion of feature detectors and adopt the cell assembly as the unit of cognition?. <i>Neuroscience Letters</i> , 2018 , 680, 88-93	3.3	36
57	Still searching for the engram. <i>Learning and Behavior</i> , 2016 , 44, 209-22	1.3	36
56	Recognition memory: adding a response deadline eliminates recollection but spares familiarity. <i>Learning and Memory</i> , 2010 , 17, 104-8	2.8	35
55	NMDA signaling in CA1 mediates selectively the spatial component of episodic memory. <i>Learning and Memory</i> , 2012 , 19, 164-9	2.8	34
54	The amygdala modulates neuronal activation in the hippocampus in response to spatial novelty. <i>Hippocampus</i> , 2008 , 18, 169-81	3.5	33
53	Acetylcholine in the orbitofrontal cortex is necessary for the acquisition of a socially transmitted food preference. <i>Learning and Memory</i> , 2005 , 12, 302-6	2.8	33
52	Time (and space) in the hippocampus. Current Opinion in Behavioral Sciences, 2017, 17, 65-70	4	32
51	Representation of memories in the cortical-hippocampal system: Results from the application of population similarity analyses. <i>Neurobiology of Learning and Memory</i> , 2016 , 134 Pt A, 178-191	3.1	31
50	The caudal medial entorhinal cortex: a selective role in recollection-based recognition memory. Journal of Neuroscience, 2010 , 30, 15695-9	6.6	31
49	Transient optogenetic inactivation of the medial entorhinal cortex biases the active population of hippocampal neurons. <i>Hippocampus</i> , 2016 , 26, 246-60	3.5	29
48	Place cell activation predicts subsequent memory. Behavioural Brain Research, 2013, 254, 65-72	3.4	26
47	The Hippocampus as a Cognitive Map Ibf Social Space. <i>Neuron</i> , 2015 , 87, 9-11	13.9	25
46	Combined administration of levetiracetam and valproic acid attenuates age-related hyperactivity of CA3 place cells, reduces place field area, and increases spatial information content in aged rat hippocampus. <i>Hippocampus</i> , 2015 , 25, 1541-55	3.5	23
45	One-trial odor-reward association: a form of event memory not dependent on hippocampal function. <i>Behavioral Neuroscience</i> , 2004 , 118, 526-39	2.1	22

44	Introduction to the special issue on place cells. <i>Hippocampus</i> , 1999 , 9, 341-5	3.5	21
43	Temporal binding function of dorsal CA1 is critical for declarative memory formation. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, 10262-10267	11.5	18
42	Olfactory memory: a bridge between humans and animals in models of cognitive aging. <i>Annals of the New York Academy of Sciences</i> , 2009 , 1170, 658-63	6.5	17
41	The hippocampus: The shock of the new. <i>Current Biology</i> , 1999 , 9, R482-4	6.3	16
40	Hippocampus: remembering the choices. <i>Neuron</i> , 2013 , 77, 999-1001	13.9	15
39	Does the hippocampus preplay memories?. <i>Nature Neuroscience</i> , 2015 , 18, 1701-2	25.5	12
38	Memory systems. Wiley Interdisciplinary Reviews: Cognitive Science, 2010, 1, 478-490	4.5	10
37	ROCs in rats? Response to Wixted and Squire. <i>Learning and Memory</i> , 2008 , 15, 691-3	2.8	10
36	The statistical analysis of partially confounded covariates important to neural spiking. <i>Journal of Neuroscience Methods</i> , 2012 , 205, 295-304	3	9
35	What Versus Where: Non-spatial Aspects of Memory Representation by the Hippocampus. <i>Current Topics in Behavioral Neurosciences</i> , 2018 , 37, 101-117	3.4	8
34	Characterizing context-dependent differential firing activity in the hippocampus and entorhinal cortex. <i>Hippocampus</i> , 2014 , 24, 476-92	3.5	7
33	A mechanism for the formation of hippocampal neuronal firing patterns that represent what happens where. <i>Learning and Memory</i> , 2011 , 18, 718-27	2.8	7
32	To sleep, perchance to integrate. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2007 , 104, 7317-8	11.5	7
31	Memory creation and modification: Enhancing the treatment of psychological disorders. <i>American Psychologist</i> , 2018 , 73, 269-285	9.5	7
30	Hippocampus as a memory map: Synaptic plasticity and memory encoding by hippocampal neurons 1999 , 9, 365		7
29	The hippocampus, episodic memory, declarative memory, spatial memory. Where does it all come together?. <i>International Congress Series</i> , 2003 , 1250, 235-244		6
28	Comparison of ventral subicular and hippocampal neuron spatial firing patterns in complex and simplified environments <i>Behavioral Neuroscience</i> , 1998 , 112, 707-713	2.1	6
27	Cues that hippocampal place cells encode: Dynamic and hierarchical representation of local and distal stimuli 1997 , 7, 624		6

26	Prefrontal Cortex: A Mystery of Belated Memories. Current Biology, 2017, 27, R418-R420	6.3	4
25	Olfactory Memory 2015 , 337-352		4
24	Perspectives on 2014 Nobel Prize. <i>Hippocampus</i> , 2015 , 25, 679-81	3.5	3
23	Neuroscience. Dedicated to memory?. <i>Science</i> , 2010 , 330, 1331-2	33.3	3
22	Cellular correlates of behavior. International Review of Neurobiology, 2001, 45, 293-312	4.4	3
21	The hippocampal system: Dissociating its functional components and recombining them in the service of declarative memory. <i>Behavioral and Brain Sciences</i> , 1996 , 19, 772-776	0.9	3
20	Neuroscience: Memories linked within a window of time. <i>Nature</i> , 2016 , 536, 405-7	50.4	2
19	Memory Systems 2012 ,		2
18	How Does the Hippocampus Support the Spatial and Temporal Attributes of Memory? 2016, 39-57		1
17	Intermixing forms of memory processing within the functional organization of the medial temporal lobe memory system. <i>Cognitive Neuroscience</i> , 2012 , 3, 208-9	1.7	1
16	Hippocampus 2010 , 1		1
15	An animal model for the treatment of Alzheimer's disease: potential for a new direction in therapies that enhance the epigenic mechanisms of memory formation. <i>Neuropsychopharmacology</i> , 2010 , 35, 853-4	8.7	1
14	Chapter 3.3 Toward a neurobiology of episodic memory. <i>Handbook of Behavioral Neuroscience</i> , 2008 , 18, 283-618	0.7	1
13	A brain system for declarative memory265-298		1
12	What's new in animal models of amnesia?. Behavioral and Brain Sciences, 1999, 22, 446-447	0.9	1
11	Consciousness, memory, and the hippocampal system: What kind of connections can we make?. <i>Behavioral and Brain Sciences</i> , 1995 , 18, 680-681	0.9	1
10	Memory Systems543		1
9	Time and the Hippocampus 2014 , 273-301		1

LIST OF PUBLICATIONS

8	Spatial and Benavioral Correlates of Hippocampal Neuronal Activity: A Primer for Computational Analysis 2010 , 293-312	1
7	Elements of Information Processing in Hippocampal Neuronal Activity: Space, Time, and Memory 2017 , 69-94	O
6	The real-life/laboratory controversy as viewed from the cognitive neurobiology of animal learning and memory. <i>Behavioral and Brain Sciences</i> , 1996 , 19, 196-197	0.9
5	The hippocampal memory system and its functional comments: Further explication and clarification. <i>Behavioral and Brain Sciences</i> , 1994 , 17, 500-517	0.9
4	Non-Spatial Correlates of Hippocampal Activity 2002 , 81-96	
3	Declarative Memory1	
2	Cover Image, Volume 26, Issue 10. <i>Hippocampus</i> , 2016 , 26, C1-C1	3.5
1	Spatial, Temporal, and Behavioral Correlates of Hippocampal Neuronal Activity: A Primer for Computational Analysis. <i>Springer Series in Computational Neuroscience</i> , 2018 , 411-435	1.1