Hayley S Ramshaw

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2351030/publications.pdf

Version: 2024-02-01

47 papers

2,612 citations

236833 25 h-index 243529 44 g-index

50 all docs

50 docs citations

50 times ranked

4052 citing authors

#	Article	IF	Citations
1	Targeting the Human \hat{l}^2 c Receptor Inhibits Contact Dermatitis in a Transgenic Mouse Model. Journal of Investigative Dermatology, 2022, 142, 1103-1113.e11.	0.3	4
2	Role of the \hat{l}^2 Common (\hat{l}^2 c) Family of Cytokines in Health and Disease. Cold Spring Harbor Perspectives in Biology, 2018, 10, a028514.	2.3	28
3	EPO does not promote interaction between the erythropoietin and beta-common receptors. Scientific Reports, 2018, 8, 12457.	1.6	21
4	miR-155 as a potential target of IL-3 signaling in primary AML cells. Leukemia Research, 2017, 57, 57-59.	0.4	6
5	MicroRNA-194 Promotes Prostate Cancer Metastasis by Inhibiting SOCS2. Cancer Research, 2017, 77, 1021-1034.	0.4	94
6	Targeting sphingosine kinase 1 induces MCL1-dependent cell death in acute myeloid leukemia. Blood, 2017, 129, 771-782.	0.6	67
7	High CD123 levels enhance proliferation in response to IL-3, but reduce chemotaxis by downregulating CXCR4 expression. Blood Advances, 2017, 1, 1067-1079.	2.5	24
8	14-3-3ζ regulates the mitochondrial respiratory reserve linked to platelet phosphatidylserine exposure and procoagulant function. Nature Communications, 2016, 7, 12862.	5.8	49
9	Jak2V617F driven myeloproliferative neoplasm occurs independently of interleukin-3 receptor beta common signaling. Haematologica, 2016, 101, e77-e80.	1.7	5
10	Ywhaz/14-3-3ζ Deletion Improves Glucose Tolerance Through a GLP-1-Dependent Mechanism. Endocrinology, 2016, 157, 2649-2659.	1.4	36
11	Efficacy of an Fc-modified anti-CD123 antibody (CSL362) combined with chemotherapy in xenograft models of acute myelogenous leukemia in immunodeficient mice. Haematologica, 2015, 100, 914-926.	1.7	51
12	<i>Neuropilinâ€2</i> genomic elements drive cre recombinase expression in primitive blood, vascular and neuronal lineages. Genesis, 2015, 53, 709-717.	0.8	4
13	14-3-3ζ deficient mice in the BALB/c background display behavioural and anatomical defects associated with neurodevelopmental disorders. Scientific Reports, 2015, 5, 12434.	1.6	39
14	A Negative Regulatory Mechanism Involving 14-3-3ζ Limits Signaling Downstream of ROCK to Regulate Tissue Stiffness in Epidermal Homeostasis. Developmental Cell, 2015, 35, 759-774.	3.1	33
15	In-vivo administration of clozapine affects behaviour but does not reverse dendritic spine deficits in the 14-3-31¶ KO mouse model of schizophrenia-like disorders. Pharmacology Biochemistry and Behavior, 2015, 138, 1-8.	1.3	14
16	A Phase 1 study of the safety, pharmacokinetics and anti-leukemic activity of the anti-CD123 monoclonal antibody CSL360 in relapsed, refractory or high-risk acute myeloid leukemia. Leukemia and Lymphoma, 2015, 56, 1406-1415.	0.6	111
17	14-3-3ζ coordinates adipogenesis of visceral fat. Nature Communications, 2015, 6, 7671.	5.8	62
18	Time Windows of Interneuron Development: Implications to Our Understanding of the Aetiology and Treatment of Schizophrenia. AIMS Neuroscience, 2015, 2, 294-321.	1.0	2

#	Article	IF	CITATIONS
19	Targeting of acute myeloid leukemia in vitro and in vivo with an anti-CD123 mAb engineered for optimal ADCC. Leukemia, 2014, 28, 2213-2221.	3.3	122
20	Interleukin-3-mediated regulation of \hat{l}^2 -catenin in myeloid transformation and acute myeloid leukemia. Journal of Leukocyte Biology, 2014, 96, 83-91.	1.5	13
21	14-3-3Îμ and ζ Regulate Neurogenesis and Differentiation of Neuronal Progenitor Cells in the Developing Brain. Journal of Neuroscience, 2014, 34, 12168-12181.	1.7	102
22	Monoclonal antibody targeting of IL-3 receptor $\hat{l}\pm$ with CSL362 effectively depletes CML progenitor and stem cells. Blood, 2014, 123, 1218-1228.	0.6	89
23	Locomotor hyperactivity in 14-3-3î¶ KO mice is associated with dopamine transporter dysfunction. Translational Psychiatry, 2013, 3, e327-e327.	2.4	28
24	IL3-Receptor Signaling Is Dispensable For The Generation and Maintenance Of Jak2V617F-Induced		

#	Article	IF	CITATIONS
37	The IL-3/IL-5/GM-CSF Common \hat{I}^2 Receptor Plays a Pivotal Role in the Regulation of Th2 Immunity and Allergic Airway Inflammation. Journal of Immunology, 2008, 180, 1199-1206.	0.4	108
38	The ILâ€3/ILâ€5/GM SF Common β Receptor Plays a Pivotal Role in Regulating Th2 Immunity and Allergic Airway Inflammation. FASEB Journal, 2008, 22, 670.12.	0.2	1
39	The Shc-binding site of the \hat{l}^2 c subunit of the GM-CSF/IL-3/IL-5 receptors is a negative regulator of hematopoiesis. Blood, 2007, 110, 3582-3590.	0.6	19
40	CD123 (IL-3 Receptor α Chain) Neutralization by a Monoclonal Antibody Selectively Eliminates Human Acute Myeloid Leukemic Stem Cells Blood, 2007, 110, 161-161.	0.6	5
41	Growth factor pleiotropy is controlled by a receptor Tyr/Ser motif that acts as a binary switch. EMBO Journal, 2006, 25, 479-485.	3.5	71
42	The phosphoserine-585–dependent pathway of the GM-CSF/IL-3/IL-5 receptors mediates hematopoietic cell survival through activation of NF-κB and induction of bcl-2. Blood, 2004, 103, 820-827.	0.6	66
43	Potential for Hematopoietic Growth Factor Antagonists in Oncology. , 2004, , 447-465.		O
44	The Development of Cytokine Receptor Antagonists as Potential Therapeutic Agents for the Myeloproliferative Disorders. Current Pharmaceutical Design, 2002, 8, 357-368.	0.9	2
45	Chronic myelomonocytic leukemia requires granulocyte-macrophage colony-stimulating factor for growth in vitro and in vivo. Experimental Hematology, 2002, 30, 1124-1131.	0.2	45
46	New approaches in the treatment of asthma. Immunology and Cell Biology, 2001, 79, 154-159.	1.0	23
47	Monoclonal antibody BB9 raised against bone marrow stromal cells identifies a cell-surface glycoprotein expressed by primitive human hemopoietic progenitors. Experimental Hematology, 2001, 29, 981-992.	0.2	21