Ewelina Kusiak-Nejman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2350885/publications.pdf

Version: 2024-02-01

72 papers

1,694 citations

257450 24 h-index 302126 39 g-index

73 all docs 73 docs citations

73 times ranked 2121 citing authors

#	Article	IF	Citations
1	Artificial Solar Light-Driven APTES/TiO2 Photocatalysts for Methylene Blue Removal from Water. Molecules, 2022, 27, 947.	3.8	11
2	The Effect of the Modification of Carbon Spheres with ZnCl2 on the Adsorption Properties towards CO2. Molecules, 2022, 27, 1387.	3.8	9
3	Magnetic Resonance Studies of Hybrid Nanocomposites Containing Nanocrystalline TiO2 and Graphene-Related Materials. Materials, 2022, 15, 2244.	2.9	O
4	New Insight on Carbon Dioxideâ€Mediated Hydrogen Production**. ChemistryOpen, 2022, 11, e202100262.	1.9	2
5	CO2 Reduction to Valuable Chemicals on TiO2-Carbon Photocatalysts Deposited on Silica Cloth. Catalysts, 2022, 12, 31.	3.5	8
6	The Benefits of Using Saccharose for Photocatalytic Water Disinfection. International Journal of Molecular Sciences, 2022, 23, 4719.	4.1	2
7	Effect of calcination on the photocatalytic activity and stability of TiO2 photocatalysts modified with APTES. Journal of Environmental Chemical Engineering, 2021, 9, 104794.	6.7	23
8	Size-dependent effects of ZnO nanoparticles on the photocatalytic degradation of phenol in a water solution. Applied Surface Science, 2021, 541, 148416.	6.1	57
9	Effect of APTES modified TiO2 on antioxidant enzymes activity secreted by Escherichia coli and Staphylococcus epidermidis. Biochemical and Biophysical Research Communications, 2021, 534, 1064-1068.	2.1	7
10	The Role of Adsorption in the Photocatalytic Decomposition of Dyes on APTES-Modified TiO2 Nanomaterials. Catalysts, 2021, 11, 172.	3.5	10
11	Hydrogen photoproduction on TiO2-reduced graphene oxide hybrid materials from water-ethanol mixture. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 418, 113406.	3.9	8
12	Magnetic moment centers in titanium dioxide photocatalysts loaded on reduced graphene oxide flakes. Reviews on Advanced Materials Science, 2021, 60, 57-63.	3.3	6
13	DC magnetization of titania supported on reduced graphene oxide flakes. Reviews on Advanced Materials Science, 2021, 60, 794-800.	3.3	1
14	ZnO/Carbon Spheres with Excellent Regenerability for Post-Combustion CO2 Capture. Materials, 2021, 14, 6478.	2.9	11
15	Influence of rGO and Preparation Method on the Physicochemical and Photocatalytic Properties of TiO2/Reduced Graphene Oxide Photocatalysts. Catalysts, 2021, 11, 1333.	3.5	8
16	Methylene blue decomposition on TiO2/reduced graphene oxide hybrid photocatalysts obtained by a two-step hydrothermal and calcination synthesis. Catalysis Today, 2020, 357, 630-637.	4.4	52
17	Antibacterial effect of TiO2 nanoparticles modified with APTES. Catalysis Communications, 2020, 134, 105862.	3.3	37
18	A New Preparation Method of Cement with Photocatalytic Activity. Materials, 2020, 13, 5540.	2.9	6

#	Article	IF	CITATIONS
19	Photocatalytic oxidation of nitric oxide over AgNPs/TiO2-loaded carbon fiber cloths. Journal of Environmental Management, 2020, 262, 110343.	7.8	17
20	Influence of modification of titanium dioxide by silane coupling agents on the photocatalytic activity and stability. Journal of Environmental Chemical Engineering, 2020, 8, 103917.	6.7	36
21	Magnetic properties of TiO2/graphitic carbon nanocomposites. Reviews on Advanced Materials Science, 2019, 58, 107-122.	3.3	18
22	Bacterial Inactivation on Concrete Plates Loaded with Modified TiO2 Photocatalysts under Visible Light Irradiation. Molecules, 2019, 24, 3026.	3.8	22
23	TiO2/graphene-based nanocomposites for water treatment: A brief overview of charge carrier transfer, antimicrobial and photocatalytic performance. Applied Catalysis B: Environmental, 2019, 253, 179-186.	20.2	152
24	Photocatalytic water disinfection under the artificial solar light by fructose-modified TiO2. Chemical Engineering Journal, 2019, 372, 203-215.	12.7	34
25	Photocatalytic Activity and Mechanical Properties of Cements Modified with TiO2/N. Materials, 2019, 12, 3756.	2.9	24
26	Hybrid carbon-TiO2 spheres: Investigation of structure, morphology and spectroscopic studies. Applied Surface Science, 2019, 469, 684-690.	6.1	8
27	Antibacterial properties of TiO2 modified with reduced graphene oxide. Ecotoxicology and Environmental Safety, 2018, 147, 788-793.	6.0	89
28	Synthesis and characterization of TiO2/graphitic carbon nanocomposites with enhanced photocatalytic performance. Applied Surface Science, 2018, 437, 441-450.	6.1	22
29	The mechanical and photocatalytic properties of modified gypsum materials. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2018, 236-237, 1-9.	3.5	16
30	Assessment of the Suitability of the One-Step Hydrothermal Method for Preparation of Non-Covalently/Covalently-Bonded TiO2/Graphene-Based Hybrids. Nanomaterials, 2018, 8, 647.	4.1	12
31	Influence of irradiation on stability and effectiveness of TiO ₂ /N,C photocatalysts. Micro and Nano Letters, 2018, 13, 739-742.	1.3	2
32	Photocatalytic degradation of acetic acid in the presence of visible light-active TiO 2 -reduced graphene oxide photocatalysts. Catalysis Today, 2017, 280, 108-113.	4.4	44
33	Graphene oxide-TiO 2 and reduced graphene oxide-TiO 2 nanocomposites: Insight in charge-carrier lifetime measurements. Catalysis Today, 2017, 287, 189-195.	4.4	39
34	Titanium dioxide modified with various amines used as sorbents of carbon dioxide. New Journal of Chemistry, 2017, 41, 1549-1557.	2.8	37
35	Adsorption of carbon dioxide on TEPA-modified TiO ₂ /titanate composite nanorods. New Journal of Chemistry, 2017, 41, 7870-7885.	2.8	16
36	Modification of Titanium Dioxide with Graphitic Carbon from Anthracene Thermal Decomposition as a Promising Method for Visible- Active Photocatalysts Preparation. Journal of Advanced Oxidation Technologies, 2016, 19, .	0.5	4

#	Article	IF	CITATIONS
37	The role of adsorption in the photocatalytic decomposition of Orange II on carbon-modified TiO2. Journal of Molecular Liquids, 2016, 220, 504-512.	4.9	31
38	TiO 2 /titanate composite nanorod obtained from various alkali solutions as CO 2 sorbents from exhaust gases. Microporous and Mesoporous Materials, 2016, 231, 117-127.	4.4	17
39	TiO2/glucose nanomaterials with enhanced antibacterial properties. Materials Letters, 2016, 185, 264-267.	2.6	10
40	Clay bricks modified by implementing of N―and/or Câ€TiO ₂ : insight into selfâ€cleaning properties toward fatty contaminant. Micro and Nano Letters, 2016, 11, 896-899.	1.3	3
41	Influence of pH of sol-gel solution on phase composition and photocatalytic activity of TiO 2 under UV and visible light. Materials Research Bulletin, 2016, 84, 152-161.	5.2	25
42	Preparation and characterisation of TiO _{2 thermally modified with cyclohexane vapours. International Journal of Materials and Product Technology, 2016, 52, 286.}	0.2	18
43	Magnetic Properties of Cobalt and Nitrogen Co-modified Titanium Dioxide Nanocomposites. NATO Science for Peace and Security Series A: Chemistry and Biology, 2016, , 109-125.	0.5	3
44	Photocatalytic performance of thermally prepared TiO ₂ /C photocatalysts under artificial solar light. Micro and Nano Letters, 2016, 11, 202-206.	1.3	11
45	Study of nitric oxide degradation properties of photoactive concrete containing nitrogen and/or carbon coâ€modified titanium dioxide – preliminary findings. Micro and Nano Letters, 2016, 11, 231-235.	1.3	5
46	The influence of carbonization temperature on the modification of TiO ₂ in the removal of methyl orange from aqueous solution by adsorption. Desalination and Water Treatment, 2016, 57, 18825-18835.	1.0	11
47	The Photocatalytic Performance of Benzene- Modified TiO2 Photocatalysts under UV-vis Light Irradiation. Journal of Advanced Oxidation Technologies, 2015, 18, .	0.5	1
48	NOx photocatalytic degradation on gypsum plates modified by TiO ₂ -N,C photocatalysts. Polish Journal of Chemical Technology, 2015, 17, 8-12.	0.5	8
49	Cementitious Plates Containing TiO2-N,C Photocatalysts for NOx Degradation. Journal of Advanced Oxidation Technologies, 2015, 18, .	0.5	3
50	Self-cleaning properties of cement plates loaded with N,C-modified TiO2 photocatalysts. Applied Surface Science, 2015, 330, 200-206.	6.1	69
51	Preliminary studies of photocatalytic activity of gypsum plasters containing TiO ₂ co-modified with nitrogen and carbon. Polish Journal of Chemical Technology, 2015, 17, 96-102.	0.5	14
52	Alkali-treated titanium dioxide as adsorbent for CO2 capture from air. Microporous and Mesoporous Materials, 2015, 202, 241-249.	4.4	25
53	Nitrogen-Modified Titanium Dioxide as an Adsorbent for Gaseous SO ₂ . Adsorption Science and Technology, 2014, 32, 403-412.	3.2	2
54	Induced self-cleaning properties towards Reactive Red 198 of the cement materials loaded with co-modified TiO2/N,C photocatalysts. Reaction Kinetics, Mechanisms and Catalysis, 2014, 113, 615-628.	1.7	7

#	Article	IF	CITATIONS
55	Cellulose-TiO2 nanocomposite with enhanced UV–Vis light absorption. Cellulose, 2013, 20, 1293-1300.	4.9	58
56	Investigation of OH radicals formation on the surface of TiO2/N photocatalyst at the presence of terephthalic acid solution. Estimation of optimal conditions. Journal of Photochemistry and Photobiology A: Chemistry, 2013, 261, 7-11.	3.9	49
57	Comparison of Methods for Evaluation of the Bactericidal Activity of Copper-Sputtered Surfaces against Methicillin-Resistant Staphylococcus aureus. Applied and Environmental Microbiology, 2012, 78, 8176-8182.	3.1	45
58	Influence of water temperature on the photocatalytic activity of titanium dioxide. Reaction Kinetics, Mechanisms and Catalysis, 2012, 106, 289-295.	1.7	10
59	One-step, hydrothermal synthesis of nitrogen, carbon co-doped titanium dioxide (N,CTiO2) photocatalysts. Effect of alcohol degree and chain length as carbon dopant precursors on photocatalytic activity and catalyst deactivation. Applied Catalysis B: Environmental, 2012, 115-116, 81-89.	20.2	138
60	High power impulse magnetron sputtering (HIPIMS) and traditional pulsed sputtering (DCMSP) Ag-surfaces leading to E. coli inactivation. Journal of Photochemistry and Photobiology A: Chemistry, 2012, 227, 11-17.	3.9	27
61	Advantages of highly ionized pulse plasma magnetron sputtering (HIPIMS) of silver for improved E. coli inactivation. Thin Solid Films, 2012, 520, 3567-3573.	1.8	27
62	Disinfection of E. coli by carbon modified TiO2 photocatalysts. Environmental Protection Engineering, 2012, 38, .	0.1	7
63	<i>E. coli</i> Inactivation by High-Power Impulse Magnetron Sputtered (HIPIMS) Cu Surfaces. Journal of Physical Chemistry C, 2011, 115, 21113-21119.	3.1	33
64	Methylene Blue decomposition under visible light irradiation in the presence of carbon-modified TiO2 photocatalysts. Journal of Photochemistry and Photobiology A: Chemistry, 2011, 226, 68-72.	3.9	34
65	Determination of the photocatalytic activity of TiO2 with high adsorption capacity. Reaction Kinetics, Mechanisms and Catalysis, 2011, 103, 279-288.	1.7	26
66	TiO ₂ modified by ammonia as a long lifetime photocatalyst for dyes decomposition. Polish Journal of Chemical Technology, 2009, 11, 1-6.	0.5	6
67	TiO2 Nanoparticles with High Photocatalytic Activity Under Visible Light. Catalysis Letters, 2009, 128, 36-39.	2.6	23
68	Lifetime of Carbon-Modified TiO2 Photocatalysts Under UV Light Irradiation. Catalysis Letters, 2009, 131, 606-611.	2.6	10
69	Carbon Modified TiO2 Photocatalyst with Enhanced Adsorptivity for Dyes from Water. Catalysis Letters, 2009, 131, 506-511.	2.6	42
70	Enhanced adsorption of two azo dyes produced by carbon modification of TiO2. Desalination, 2009, 249, 359-363.	8.2	37
71	Study of Nitrogen-Modified Titanium Dioxide as an Adsorbent for Azo Dyes. Adsorption Science and Technology, 2008, 26, 501-513.	3.2	9
72	Preparation and characterization of TiO2 modified with APTMS for phenol decomposition., 0, 207, 115-121.		O