Zhi-Liang Zheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2350747/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Carbon and nitrogen nutrient balance signaling in plants. Plant Signaling and Behavior, 2009, 4, 584-591.	2.4	225
2	The Rop GTPase Switch Controls Multiple Developmental Processes in Arabidopsis. Plant Physiology, 2001, 126, 670-684.	4.8	196
3	The Rop GTPase: an emerging signaling switch in plants. , 2000, 44, 1-9.		173
4	Plasma Membrane–Associated ROP10 Small GTPase Is a Specific Negative Regulator of Abscisic Acid Responses in Arabidopsis. Plant Cell, 2002, 14, 2787-2797.	6.6	146
5	The Rop GTPase switch turns on polar growth in pollen. Trends in Plant Science, 2000, 5, 298-303.	8.8	110
6	Transcriptome Analysis Reveals Specific Modulation of Abscisic Acid Signaling by ROP10 Small GTPase in Arabidopsis. Plant Physiology, 2005, 139, 1350-1365.	4.8	80
7	Aberrant gene expression in the <scp>A</scp> rabidopsis <i><scp>SULTR</scp>1;2</i> mutants suggests a possible regulatory role for this sulfate transporter in response to sulfur nutrient status. Plant Journal, 2014, 77, 185-197.	5.7	72
8	A negative regulatory role for auxin in sulphate deficiency response in Arabidopsis thaliana. Plant Molecular Biology, 2006, 63, 221-235.	3.9	70
9	The Arabidopsis A4 Subfamily of Lectin Receptor Kinases Negatively Regulates Abscisic Acid Response in Seed Germination Â. Plant Physiology, 2009, 149, 434-444.	4.8	69
10	A Mutation in MRH2 Kinesin Enhances the Root Hair Tip Growth Defect Caused by Constitutively Activated ROP2 Small GTPase in Arabidopsis. PLoS ONE, 2007, 2, e1074.	2.5	66
11	Transcriptome comparison and gene coexpression network analysis provide a systems view of citrus response to †Candidatus Liberibacter asiaticus' infection. BMC Genomics, 2013, 14, 27.	2.8	61
12	Arabidopsis γâ€glutamylcyclotransferase affects glutathione content and root system architecture during sulfur starvation. New Phytologist, 2019, 221, 1387-1397.	7.3	42
13	The OSU1/QUA2/TSD2-Encoded Putative Methyltransferase Is a Critical Modulator of Carbon and Nitrogen Nutrient Balance Response in Arabidopsis. PLoS ONE, 2008, 3, e1387.	2.5	42
14	Modification of Plant Architecture in Chrysanthemum by Ectopic Expression of the Tobacco Phytochrome B1 Gene. Journal of the American Society for Horticultural Science, 2001, 126, 19-26.	1.0	39
15	Integrated Systems Biology Analysis of Transcriptomes Reveals Candidate Genes for Acidity Control in Developing Fruits of Sweet Orange (Citrus sinensis L. Osbeck). Frontiers in Plant Science, 2016, 7, 486.	3.6	32
16	Transceptors at the boundary of nutrient transporters and receptors: a new role for Arabidopsis SULTR1;2 in sulfur sensing. Frontiers in Plant Science, 2014, 5, 710.	3.6	23
17	Gene coexpression network analysis of fruit transcriptomes uncovers a possible mechanistically distinct class of sugar/acid ratio-associated genes in sweet orange. BMC Plant Biology, 2017, 17, 186.	3.6	23
18	C-terminal domain (CTD) phosphatase links Rho GTPase signaling to Pol II CTD phosphorylation in <i>Arabidopsis</i> and yeast. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E8197-E8206.	7.1	20

ZHI-LIANG ZHENG

#	Article	IF	CITATIONS
19	Analysis of alcohol use disorders from the Nathan Kline Institute—Rockland Sample: Correlation of brain cortical thickness with neuroticism. Drug and Alcohol Dependence, 2017, 170, 66-73.	3.2	10
20	Cyclin-Dependent Kinases and CTD Phosphatases in Cell Cycle Transcriptional Control: Conservation across Eukaryotic Kingdoms and Uniqueness to Plants. Cells, 2022, 11, 279.	4.1	10
21	Modulation of the Pol II CTD Phosphorylation Code by Rac1 and Cdc42 Small GTPases in Cultured Human Cancer Cells and Its Implication for Developing a Synthetic-Lethal Cancer Therapy. Cells, 2020, 9, 621.	4.1	5
22	Use of the gl1 Mutant & the CA-rop2 Transgenic Plants of Arabidopsis thaliana in the Biology Laboratory Course. American Biology Teacher, 2006, 68, e148-e153.	0.2	4
23	Phytochromes A1 and B1 have distinct functions in the photoperiodic control of flowering in the obligate long-day plant Nicotiana sylvestris. Plant, Cell and Environment, 2006, 29, 1673-1685.	5.7	3
24	OsPIE1, the Rice Ortholog of Arabidopsis PHOTOPERIOD-INDEPENDENT EARLY FLOWERING1, Is Essential for Embryo Development. PLoS ONE, 2010, 5, e11299.	2.5	3
25	Ras and Rho GTPase regulation of Pol II transcription: A shortcut model revisited. Transcription, 2017, 8, 268-274.	3.1	3
26	Brain Imagingâ€Guided Analysis Reveals DNA Methylation Profiles Correlated with Insular Surface Area and Alcohol Use Disorder. Alcoholism: Clinical and Experimental Research, 2019, 43, 628-639.	2.4	3
27	Network Analysis of Differentially Expressed Genes across Four Sweet Orange Varieties Reveals a Conserved Role of Gibberellin and Ethylene Responses and Transcriptional Regulation in Expanding Citrus Fruits. Tropical Plant Biology, 2019, 12, 12-20.	1.9	3
28	Advances in understanding sulfur utilization efficiency in plants. , 2017, , 215-232.		2
29	A luciferase-based method for assay of 5′-adenylylsulfate reductase. Analytical Biochemistry, 2014, 460, 22-28.	2.4	1
30	Expression analysis suggests potential roles for PH-LIKE (PHL) genes in diploid strawberry Fragaria vesca L. seedling hormone response and fruit development. Journal of Horticultural Science and Biotechnology, 2019, 94, 151-159.	1.9	1
31	SULTR1;2 in S Nutrient-Status Control in Arabidopsis. Proceedings of the International Plant Sulfur Workshop, 2015, , 81-91.	0.1	0