Monique M A Verstegen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2350733/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Recapitulating Cholangiopathy-Associated Necroptotic Cell Death InÂVitro Using Human Cholangiocyte Organoids. Cellular and Molecular Gastroenterology and Hepatology, 2022, 13, 541-564.	2.3	15
2	The potential and limitations of intrahepatic cholangiocyte organoids to study inborn errors of metabolism. Journal of Inherited Metabolic Disease, 2022, 45, 353-365.	1.7	4
3	Recapitulating lipid accumulation and related metabolic dysregulation in human liver-derived organoids. Journal of Molecular Medicine, 2022, 100, 471-484.	1.7	9
4	Recapitulating hepatitis E virus–host interactions and facilitating antiviral drug discovery in human liver–derived organoids. Science Advances, 2022, 8, eabj5908.	4.7	28
5	Hepatobiliary tumor organoids for personalized medicine: a multicenter view on establishment, limitations, and future directions. Cancer Cell, 2022, 40, 226-230.	7.7	10
6	Assessment of human leukocyte antigen matching algorithm PIRCHEâ€II on liver transplantation outcomes. Liver Transplantation, 2022, 28, 1356-1366.	1.3	6
7	Design by Nature: Emerging Applications of Native Liver Extracellular Matrix for Cholangiocyte Organoid-Based Regenerative Medicine. Bioengineering, 2022, 9, 110.	1.6	12
8	Hydrogels derived from decellularized liver tissue support the growth and differentiation of cholangiocyte organoids. Biomaterials, 2022, 284, 121473.	5.7	33
9	Human branching cholangiocyte organoids recapitulate functional bile duct formation. Cell Stem Cell, 2022, 29, 776-794.e13.	5.2	17
10	Liver Ischemia and Reperfusion Induce Periportal Expression of Necroptosis Executor pMLKL Which Is Associated With Early Allograft Dysfunction After Transplantation. Frontiers in Immunology, 2022, 13,	2.2	5
11	Modelling immune cytotoxicity for cholangiocarcinoma with tumour-derived organoids and effector T cells. British Journal of Cancer, 2022, 127, 649-660.	2.9	23
12	Kinome profiling of cholangiocarcinoma organoids reveals potential druggable targets that hold promise for treatment stratification. Molecular Medicine, 2022, 28, .	1.9	2
13	Cancer-Associated Fibroblasts Provide a Stromal Niche for Liver Cancer Organoids That Confers Trophic Effects and Therapy Resistance. Cellular and Molecular Gastroenterology and Hepatology, 2021, 11, 407-431.	2.3	103
14	The biological process of lysineâ€ŧRNA charging is therapeutically targetable in liver cancer. Liver International, 2021, 41, 206-219.	1.9	9
15	Scaffolds obtained from decellularized human extrahepatic bile ducts support organoids to establish functional biliary tissue in a dish. Biotechnology and Bioengineering, 2021, 118, 836-851.	1.7	26
16	Long-term live imaging and multiscale analysis identify heterogeneity and core principles of epithelial organoid morphogenesis. BMC Biology, 2021, 19, 37.	1.7	54
17	Mitochondrial Dysfunction and Oxidative Stress in Liver Transplantation and Underlying Diseases: New Insights and Therapeutics. Transplantation, 2021, 105, 2362-2373.	0.5	13
18	Impact of hypoxia and AMPK on CFTR-mediated bicarbonate secretion in human cholangiocyte organoids. American Journal of Physiology - Renal Physiology, 2021, 320, G741-G752.	1.6	3

Monique M A Verstegen

#	Article	IF	CITATIONS
19	Building consensus on definition and nomenclature of hepatic, pancreatic, and biliary organoids. Cell Stem Cell, 2021, 28, 816-832.	5.2	133
20	Bile Duct Repair in Human Liver Grafts: Effective Cholangiocyte Organoid Engraftment and Plasticity. Hepatology, 2021, 74, 2287-2289.	3.6	0
21	Letter to the Editor: High Mobility Group Box Protein 1 Release Is an Identified Driver of Inflammation in the Pathogenesis of Biliary Atresia. Hepatology, 2021, 74, 2920-2921.	3.6	1
22	Application of human liver organoids as a patient-derived primary model for HBV infection and related hepatocellular carcinoma. ELife, 2021, 10, .	2.8	51
23	Cover Image, Volume 118, Number 2, February 2021. Biotechnology and Bioengineering, 2021, 118, i.	1.7	0
24	Precancerous liver diseases do not cause increased mutagenesis in liver stem cells. Communications Biology, 2021, 4, 1301.	2.0	9
25	Cholangiocyte organoids from human bile retain a local phenotype and can repopulate bile ducts in vitro. Clinical and Translational Medicine, 2021, 11, e566.	1.7	12
26	Rescue of chloride and bicarbonate transport by elexacaftor-ivacaftor-tezacaftor in organoid-derived CF intestinal and cholangiocyte monolayers. Journal of Cystic Fibrosis, 2021, , .	0.3	9
27	Fast, robust and effective decellularization of whole human livers using mild detergents and pressure controlled perfusion. Materials Science and Engineering C, 2020, 108, 110200.	3.8	60
28	Largeâ€Scale Production of LGR5â€Positive Bipotential Human Liver Stem Cells. Hepatology, 2020, 72, 257-270.	3.6	89
29	Mitochondrial Fusion Via OPA1 and MFN1 Supports Liver Tumor Cell Metabolism and Growth. Cells, 2020, 9, 121.	1.8	60
30	First Report on Ex Vivo Delivery of Paracrine Active Human Mesenchymal Stromal Cells to Liver Grafts During Machine Perfusion. Transplantation, 2020, 104, e5-e7.	0.5	30
31	Prime editing for functional repair in patient-derived disease models. Nature Communications, 2020, 11, 5352.	5.8	134
32	Longâ€Term Perfusion of the Liver Outside the Body: Warming Up for Ex Vivo Therapies?. Hepatology, 2020, 72, 1485-1487.	3.6	4
33	Characterization of gut-homing molecules in non-endstage livers of patients with primary sclerosing cholangitis and inflammatory bowel disease. Journal of Translational Autoimmunity, 2020, 3, 100054.	2.0	10
34	Rotavirus Infection and Cytopathogenesis in Human Biliary Organoids Potentially Recapitulate Biliary Atresia Development. MBio, 2020, 11, .	1.8	19
35	LGR5 marks targetable tumor-initiating cells in mouse liver cancer. Nature Communications, 2020, 11, 1961.	5.8	49
36	Human Bile Contains Cholangiocyte Organoid-Initiating Cells Which Expand as Functional Cholangiocytes in Non-canonical Wnt Stimulating Conditions. Frontiers in Cell and Developmental Biology, 2020, 8, 630492.	1.8	11

#	Article	IF	CITATIONS
37	Human extrahepatic and intrahepatic cholangiocyte organoids show region-specific differentiation potential and model cystic fibrosis-related bile duct disease. Scientific Reports, 2020, 10, 21900.	1.6	43
38	Bioengineering Liver Transplantation. Bioengineering, 2019, 6, 96.	1.6	1
39	Recreating Tumour Complexity in a Dish: Organoid Models to Study Liver Cancer Cells and their Extracellular Environment. Cancers, 2019, 11, 1706.	1.7	26
40	Necroptotic Cell Death in Liver Transplantation and Underlying Diseases: Mechanisms and Clinical Perspective. Liver Transplantation, 2019, 25, 1091-1104.	1.3	34
41	Experimental models to unravel the molecular pathogenesis, cell of origin and stem cell properties of cholangiocarcinoma. Liver International, 2019, 39, 79-97.	1.9	25
42	Ultra-thin fluorocarbon foils optimise multiscale imaging of three-dimensional native and optically cleared specimens. Scientific Reports, 2019, 9, 17292.	1.6	20
43	Modeling liver cancer and therapy responsiveness using organoids derived from primary mouse liver tumors. Carcinogenesis, 2019, 40, 145-154.	1.3	30
44	Lipid-mediated Wnt protein stabilization enables serum-free culture of human organ stem cells. Nature Communications, 2017, 8, 14578.	5.8	60
45	From organoids to organs: Bioengineering liver grafts fromÂhepatic stem cells and matrix. Bailliere's Best Practice and Research in Clinical Gastroenterology, 2017, 31, 151-159.	1.0	36
46	Long-Term Adult Feline Liver Organoid Cultures for Disease Modeling ofÂHepatic Steatosis. Stem Cell Reports, 2017, 8, 822-830.	2.3	82
47	Dynamics of Proliferative and Quiescent Stem Cells in Liver Homeostasis and Injury. Gastroenterology, 2017, 153, 1133-1147.	0.6	39
48	Human primary liver cancer–derived organoid cultures for disease modeling and drug screening. Nature Medicine, 2017, 23, 1424-1435.	15.2	905
49	Decellularization of Whole Human Liver Grafts Using Controlled Perfusion for Transplantable Organ Bioscaffolds. Stem Cells and Development, 2017, 26, 1304-1315.	1.1	71
50	Characterization and Comparison of Canine Multipotent Stromal Cells Derived from Liver and Bone Marrow. Stem Cells and Development, 2016, 25, 139-150.	1.1	18
51	Tissue-specific mutation accumulation in human adult stem cells during life. Nature, 2016, 538, 260-264.	13.7	759
52	Mesenchymal Stromal Cell-Derived Factors Promote Tissue Repair in a Small-for-Size Ischemic Liver Model but Do Not Protect against Early Effects of Ischemia and Reperfusion Injury. Journal of Immunology Research, 2015, 2015, 1-13.	0.9	7
53	Human Graft-Derived Mesenchymal Stromal Cells Potently Suppress Alloreactive T-Cell Responses. Stem Cells and Development, 2015, 24, 1436-1447.	1.1	19
54	Long-Term Culture of Genome-Stable Bipotent Stem Cells from Adult Human Liver. Cell, 2015, 160, 299-312.	13.5	1,166

Monique M A Verstegen

#	Article	IF	CITATIONS
55	Gene Therapies for Hepatitis C Virus. Advances in Experimental Medicine and Biology, 2015, 848, 1-29.	0.8	8
56	Recombination-activating gene 1 (Rag1)–deficient mice with severe combined immunodeficiency treated with lentiviral gene therapy demonstrate autoimmune Omenn-like syndrome. Journal of Allergy and Clinical Immunology, 2014, 133, 1116-1123.	1.5	56
57	No Evidence for Circulating Mesenchymal Stem Cells in Patients with Organ Injury. Stem Cells and Development, 2014, 23, 2328-2335.	1.1	61
58	Correction of Murine SCID-X1 by Lentiviral Gene Therapy Using a Codon-optimized IL2RG Gene and Minimal Pretransplant Conditioning. Molecular Therapy, 2011, 19, 1867-1877.	3.7	39
59	Integrated Transcript and Genome Analyses Reveal NKX2-1 and MEF2C as Potential Oncogenes in T Cell Acute Lymphoblastic Leukemia. Cancer Cell, 2011, 19, 484-497.	7.7	322
60	Insertion Sites in Engrafted Cells Cluster Within a Limited Repertoire of Genomic Areas After Gammaretroviral Vector Gene Therapy. Molecular Therapy, 2011, 19, 2031-2039.	3.7	48
61	Human Placenta Is a Potent Hematopoietic Niche Containing Hematopoietic Stem and Progenitor Cells throughout Development. Cell Stem Cell, 2009, 5, 385-395.	5.2	193
62	Intrinsic differentiation potential of adolescent human tendon tissue: an in-vitro cell differentiation study. BMC Musculoskeletal Disorders, 2007, 8, 16.	0.8	92
63	Thrombopoietin is a major limiting factor for selective outgrowth of human umbilical cord blood cells in non-obese diabetic/severe combined immunodeficient recipient mice. British Journal of Haematology, 2003, 122, 837-846.	1.2	4
64	Transplantation of Human Umbilical Cord Blood Cells in Macrophage-Depleted SCID Mice: Evidence for Accessory Cell Involvement in Expansion of Immature CD34+CD38â^Cells. Blood, 1998, 91, 1966-1976.	0.6	70
65	Highly Efficient Transduction of the Green Fluorescent Protein Gene in Human Umbilical Cord Blood Stem Cells Capable of Cobblestone Formation in Long-Term Cultures and Multilineage Engraftment of Immunodeficient Mice. Blood, 1998, 92, 4013-4022.	0.6	106