Rodrigo Cogni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2350402/publications.pdf

Version: 2024-02-01

516710 580821 32 799 16 25 citations g-index h-index papers 36 36 36 942 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Ehrlich and Raven escape and radiate coevolution hypothesis at different levels of organization: Past and future perspectives. Evolution; International Journal of Organic Evolution, 2022, 76, 1108-1123.	2.3	4
2	A novel transposable element-mediated mechanism causes antiviral resistance in <i>Drosophila</i> through truncating the Veneno protein. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	10
3	From the leaf to the community: Distinct dimensions of phytochemical diversity shape insect–plant interactions within and among individual plants. Journal of Ecology, 2021, 109, 2475-2487.	4.0	8
4	Clinal and seasonal changes are correlated in <i>Drosophila melanogaster</i> natural populations. Evolution; International Journal of Organic Evolution, 2021, 75, 2042-2054.	2.3	8
5	Genomic Responses to Climate Change: Making the Most of the Drosophila Model. Frontiers in Genetics, 2021, 12, 676218.	2.3	1
6	Host-shift as the cause of emerging infectious diseases: Experimental approaches using Drosophila-virus interactions. Genetics and Molecular Biology, 2021, 44, e20200197.	1.3	5
7	The Chemistry and Chemical Ecology of Lepidopterans as Investigated in Brazil. Progress in the Chemistry of Organic Natural Products, 2021, $116,37\text{-}66.$	1.1	O
8	Wolbachia reduces virus infection in a natural population of Drosophila. Communications Biology, 2021, 4, 1327.	4.4	26
9	The Antiviral Effects of the Symbiont Bacteria Wolbachia in Insects. Frontiers in Immunology, 2020, 11, 626329.	4.8	42
10	The geographical and seasonal mosaic in a plant-herbivore interaction: patterns of defences and herbivory by a specialist and a non-specialist. Scientific Reports, 2019, 9, 15206.	3.3	6
11	Temporal distribution in a tri-trophic system associated with Piper amalago L. in a tropical seasonal forest. Arthropod-Plant Interactions, 2019, 13, 647-652.	1.1	7
12	On the Long-term Stability of Clines in Some Metabolic Genes in Drosophila melanogaster. Scientific Reports, 2017, 7, 42766.	3. 3	18
13	Complex Coding and Regulatory Polymorphisms in a Restriction Factor Determine the Susceptibility of <i>Drosophila</i> to Viral Infection. Genetics, 2017, 206, 2159-2173.	2.9	26
14	Addicted? Reduced host resistance in populations with defensive symbionts. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20160778.	2.6	44
15	The genetic architecture of resistance to virus infection in <i>Drosophila</i> . Molecular Ecology, 2016, 25, 5228-5241.	3.9	50
16	Pyrrolizidine Alkaloids Negatively Affect a Generalist Herbivore Feeding on the Chemically Protected Legume Crotalaria pallida. Neotropical Entomology, 2016, 45, 252-257.	1.2	12
17	The Causes and Consequences of Changes in Virulence following Pathogen Host Shifts. PLoS Pathogens, 2015, 11, e1004728.	4.7	110
18	Variation in <i>Drosophila melanogaster</i> central metabolic genes appears driven by natural selection both within and between populations. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20142688.	2.6	28

#	Article	IF	CITATIONS
19	THE INTENSITY OF SELECTION ACTING ON THE <i>COUCH POTATO </i> A DIAPAUSE CLINE. Evolution; International Journal of Organic Evolution, 2014, 68, 538-548.	2.3	67
20	A Small Systemâ€"High-Resolution Study of Metabolic Adaptation in the Central Metabolic Pathway to Temperate Climates in Drosophila melanogaster. Molecular Biology and Evolution, 2014, 31, 2032-2041.	8.9	36
21	Common-Garden Experiments Reveal Geographical Variation in the Interaction Among Crotalaria pallida (Leguminosae: Papilionideae), Utetheisa ornatrix L. (Lepidoptera: Arctiidae), and Extrafloral Nectary Visiting Ants. Neotropical Entomology, 2013, 42, 223-229.	1.2	7
22	Preference for high concentrations of plant pyrrolizidine alkaloids in the specialist arctiid moth Utetheisa ornatrix depends on previous experience. Arthropod-Plant Interactions, 2013, 7, 169-175.	1.1	10
23	A free lunch? No cost for acquiring defensive plant pyrrolizidine alkaloids in a specialist arctiid moth (<i><scp>U</scp>tetheisa ornatrix</i>). Molecular Ecology, 2012, 21, 6152-6162.	3.9	39
24	Varying Herbivore Population Structure Correlates with Lack of Local Adaptation in a Geographic Variable Plant-Herbivore Interaction. PLoS ONE, 2011, 6, e29220.	2.5	18
25	Resistance to Plant Invasion? A Native Specialist Herbivore Shows Preference for and Higher Fitness on an Introduced Host. Biotropica, 2010, 42, 188-193.	1.6	35
26	Recruitment Behavior During Foraging in the Neotropical Ant Gnamptogenys moelleri (Formicidae:) Tj ETQq0 0 0	rgBT /Ove	erlock 10 Tf 5
27	Patterns in foraging and nesting ecology in the neotropical ant, Gnamptogenys moelleri (Formicidae,) Tj $$ ETQq 1 1	. 0 <mark>,78</mark> 4314	4 rgBT /Overl
28	Interhabitat differences in ant activity on plant foliage: ants at extrafloral nectaries of Hibiscus pernambucensis in sandy and mangrove forests. Entomologia Experimentalis Et Applicata, 2003, 107, 125-131.	1.4	25
29	Galling Insects (Diptera: Cecidomyiidae) Survive Inundation during Host Plant Flooding in Central Amazonia1. Biotropica, 2003, 35, 115.	1.6	3
30	Seed cleaning of Cupania vernalis (Sapindaceae) by ants: edge effect in a highland forest in south-east Brazil. Journal of Tropical Ecology, 2002, 18, 303-307.	1.1	27
31	Influence of prey size on predation success by Zelus longipes L. (Het., Reduviidae). Journal of Applied Entomology, 2002, 126, 74-78.	1.8	48
32	Local adaptation in a plant herbivore interaction depends on the spatial scale. Biological Journal of the Linnean Society, 0, 97, 494-502.	1.6	33