

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2350387/publications.pdf Version: 2024-02-01

ΙΡΚΛΥΛΙ

#	Article	IF	CITATIONS
1	The 2001 Bhuj earthquake: Tomographic evidence for fluids at the hypocenter and its implications for rupture nucleation. Geophysical Research Letters, 2002, 29, 5-1-5-4.	1.5	129
2	Microseismicity and tectonics in northeast India. Bulletin of the Seismological Society of America, 1991, 81, 131-138.	1.1	94
3	The 2009 Bhutan and Assam felt earthquakes (M _w 6.3 and 5.1) at the Kopili fault in the northeast Himalaya region. Geomatics, Natural Hazards and Risk, 2010, 1, 273-281.	2.0	75
4	3-D seismic structure of the northeast India region and its implications for local and regional tectonics. Journal of Asian Earth Sciences, 2008, 33, 25-41.	1.0	72
5	Aftershocks of the March 1999 Chamoli Earthquake and Seismotectonic Structure of the Garhwal Himalaya. Bulletin of the Seismological Society of America, 2003, 93, 109-117.	1.1	71
6	Microseismicity and source mechanism study: Shillong Plateau, northeast India. Bulletin of the Seismological Society of America, 1987, 77, 184-194.	1.1	67
7	Himalayan tectonic model and the great earthquakes: an appraisal. Geomatics, Natural Hazards and Risk, 2010, 1, 51-67.	2.0	58
8	Seismic Tomography Structure of the 1999 Chamoli Earthquake Source Area in the Garhwal Himalaya. Bulletin of the Seismological Society of America, 2003, 93, 1854-1861.	1.1	46
9	3â€D seismic tomography of the lithosphere and its geodynamic implications beneath the northeast India region. Tectonics, 2017, 36, 962-980.	1.3	44
10	Aftershock Investigation in the Andaman-Nicobar Islands of India and Its Seismotectonic Implications. Bulletin of the Seismological Society of America, 2007, 97, S71-S85.	1.1	42
11	Lapse-Time Dependence of Coda Q in the Source Region of the 1999 Chamoli Earthquake. Bulletin of the Seismological Society of America, 2008, 98, 2080-2086.	1.1	41
12	State of Tectonic Stress in Northeast India and Adjoining South Asia Region: An Appraisal. Bulletin of the Seismological Society of America, 2013, 103, 894-910.	1.1	39
13	Seismic source characteristics in Kachchh and Saurashtra regions of Western India: b-value and fractal dimension mapping of aftershock sequences. Natural Hazards, 2015, 77, 33-49.	1.6	36
14	Frequency-Dependent Attenuation of Body and Coda Waves in the Andaman Sea Basin. Bulletin of the Seismological Society of America, 2011, 101, 109-125.	1.1	35
15	Aftershocks and Seismotectonic Implications of the 13 September 2002 Earthquake (Mw 6.5) in the Andaman Sea Basin. Bulletin of the Seismological Society of America, 2004, 94, 326-333.	1.1	30
16	Popâ€up tectonics of the Shillong Plateau in the great 1897 earthquake (M _s 8.7): Insights from the gravity in conjunction with the recent seismological results. Tectonics, 2008, 27, .	1.3	30
17	Site Amplification, Qs, and Source Parameterization in Guwahati Region from Seismic and Geotechnical Analysis. Seismological Research Letters, 2008, 79, 526-539.	0.8	29
18	Variations of the crustal thickness in Nepal Himalayas based on tomographic inversion of regional earthquake data. Solid Earth, 2015, 6, 207-216.	1.2	27

J R KAYAL

#	Article	IF	CITATIONS
19	3-D seismic structure of the source area of the 1993 Latur, India, earthquake and its implications for rupture nucleations. Tectonophysics, 2006, 415, 1-16.	0.9	26
20	Evaluation of crustal and upper mantle structures using receiver function analysis: ISM broadband observatory data. Journal of the Geological Society of India, 2011, 78, 76-80.	0.5	26
21	Moment Magnitude (M W) and Local Magnitude (M L) Relationship for Earthquakes in Northeast India. Pure and Applied Geophysics, 2012, 169, 1977-1988.	0.8	26
22	Ground motion parameters of Shillong plateau: One of the most seismically active zones of northeastern India. Earthquake Science, 2009, 22, 283-291.	0.4	23
23	The September 2011 Sikkim Himalaya earthquake Mw 6.9: is it a plane of detachment earthquake?. Geomatics, Natural Hazards and Risk, 2016, 7, 248-263.	2.0	23
24	CrustalP-wave velocity and velocity-ratio study in northeast India by a microearthquake survey. Pure and Applied Geophysics, 1990, 134, 93-108.	0.8	22
25	Fractal dimension and b-value mapping in the Andaman-Sumatra subduction zone. Natural Hazards, 2011, 57, 27-37.	1.6	22
26	Earthquake Source Zones in Northeast India: Seismic Tomography, Fractal Dimension and b Value Mapping. Pure and Applied Geophysics, 2010, 167, 999-1012.	0.8	20
27	An Appraisal of the 2001 Bhuj Earthquake (Mw 7.7, India) Source Zone: Fractal Dimension and b Value Mapping of the Aftershock Sequence. Pure and Applied Geophysics, 2012, 169, 2127-2138.	0.8	20
28	Growth of mountain belts in central Asia triggers a new collision zone in central India. Scientific Reports, 2018, 8, 10710.	1.6	20
29	Liquefaction potential of Agartala City in Northeast India using a GIS platform. Bulletin of Engineering Geology and the Environment, 2019, 78, 2919-2931.	1.6	20
30	Earthquake prediction in northeast India?A review. Pure and Applied Geophysics, 1991, 136, 297-313.	0.8	18
31	Source parameters and focal mechanisms of local earthquakes: Single broadband observatory at ISM Dhanbad. Journal of the Geological Society of India, 2009, 74, 413-419.	0.5	18
32	Aftershock Investigation in the Andaman-Nicobar Islands: An Antidote to Public Panic?. Seismological Research Letters, 2007, 78, 591-599.	0.8	17
33	Fault Geometry of the <i>M</i> _w Â7.7 Western India Intraplate Earthquake: Constrained from Doubleâ€Difference Tomography and Faultâ€Plane Solutions. Bulletin of the Seismological Society of America, 2016, 106, 1446-1460.	1.1	17
34	Microseismicity and tectonics at the Indian/Pacific plate boundary: south-east Wellington province, New Zealand. Geophysical Journal International, 1984, 77, 567-592.	1.0	15
35	Seismic Tomography Structure of the 1993 Killari Earthquake Source Area. Bulletin of the Seismological Society of America, 2002, 92, 2036-2039.	1.1	15
36	Study of lapse time dependence coda Q in the Andaman Islands using the aftershocks of the 2002 earthquake (M w 6.5). Natural Hazards, 2015, 75, 779-793.	1.6	15

J R KAYAL

#	Article	IF	CITATIONS
37	Anomalous behaviour of precursor resistivity in Shillong area, NE India. Geophysical Journal International, 1988, 94, 97-103.	1.0	12
38	Relationship between electrical and thermal resistivities for differing grades of coal. Geophysics, 1982, 47, 127-129.	1.4	11
39	Ground motion parameters in Shillong and Mikir Plateau supplemented by mapping of amplification factors in Guwahati City, Northeastern India. Journal of Asian Earth Sciences, 2011, 42, 1424-1436.	1.0	9
40	Moment magnitude–Âlocal magnitude relationship for the earthquakes of the Shillong-Mikir plateau, Northeastern India Region: a new perspective. Geomatics, Natural Hazards and Risk, 2012, 3, 365-375.	2.0	9
41	The attenuation mechanism of S-waves in the source zone of the 1999 Chamoli earthquake. Journal of Asian Earth Sciences, 2014, 79, 446-454.	1.0	9
42	Earthquake Source Zones in Northeast India: Seismic Tomography, Fractal Dimension and b Value Mapping. , 2010, , 145-158.		6
43	Simultaneous inversion of the aftershock data of the 1993 Killari earthquake in Peninsular India and its seismotectonic implications. Journal of Earth System Science, 2002, 111, 1-15.	0.6	5
44	Seismic treatment for a maximal credible earthquake in Guwahati city area of northeast India region. Natural Hazards, 2014, 70, 733-753.	1.6	5
45	Fault plane solutions of the january 26th, 2001 bhuj earthquake sequence. Journal of Earth System Science, 2003, 112, 413-419.	0.6	4
46	Correlation between crustal anisotropy and seismogenic stress field beneath Shillong–Mikir Plateau and its vicinity in North East India. Geomatics, Natural Hazards and Risk, 2021, 12, 2070-2086.	2.0	3
47	The 28 April 2021 Kopili Fault Earthquake (Mw 6.1) in Assam Valley of North East India: Seismotectonic Appraisal. Pure and Applied Geophysics, 2022, 179, 2167-2182.	0.8	3
48	Study of the epicentral trends and depth sections for aftershocks of the 26th january 2001, Bhuj earthquake in Western India. Journal of Earth System Science, 2003, 112, 401-412.	0.6	2
49	Ground motion parameters in the Shillong–Mikir plateau, northeastern India. Geomatics, Natural Hazards and Risk, 2011, 2, 349-363.	2.0	2
50	Correlation of T-log with E-log in coal-bearing formations. Pure and Applied Geophysics, 1981, 119, 349-355.	0.8	1
51	Seismic velocity-ratio in the crust and uppermost mantle in southeast Wellington province, New Zealand. Pure and Applied Geophysics, 1982, 120, 809-819.	0.8	1
52	The 2001 Bhuj earthquake (MW7.7) in western India: 3D velocity structure and seismotectonic processes. Acta Geodaetica Et Geophysica Hungarica, 2008, 43, 75-92.	0.4	1
53	Fractal Dimension and b Value Mapping Before and After the 2004 Megathrust Earthquake in the Andaman-Sumatra Subduction Zone. Geophysical Monograph Series, 2012, , 55-62.	0.1	1
54	Introduction to the special volume on Bhuj earthquake. Natural Hazards, 2013, 65, 1023-1025.	1.6	1

J R KAYAL

#	Article	IF	CITATIONS
55	Acceleration Attenuation Regularities in the Western Himalayas. Seismic Instruments, 2020, 56, 72-81.	0.0	1
56	Reply by the author to Dr. G. R. Olhoeft. Geophysics, 1982, 47, 1461-1461.	1.4	1
57	Seismic Tomography Structures Of Source Areas Of The Two Recent Devastating Earthquakes In Peninsular India. Journal of the Virtual Explorer, 0, 12, .	0.0	1
58	Seismicity and structure of the Indian subcontin. Episodes, 2020, 43, 650-664.	0.8	1