Evgeny Slivkin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2349913/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Electrochemical Deposition of Ni–W Crack-Free Coatings. Coatings, 2018, 8, 233.	2.6	18
2	Properties of contact coatings based on ruthenium nanofilms for MEMS switches. Technical Physics Letters, 2015, 41, 691-693.	0.7	6
3	Investigation of the Influence of Deep-Level Defects on the Conversion Efficiency of Sibased Solar Cells. MRS Advances, 2016, 1, 911-916.	0.9	5
4	Enhanced sputtering yield of nanostructured samples under Ar+ cluster bombardment. Vacuum, 2020, 172, 109096.	3.5	5
5	Study of Ni-Mo electrodeposition in direct and pulse-reverse current. Journal of Physics: Conference Series, 2017, 857, 012046.	0.4	4
6	Study of interaction of a plasma jet with the silicon melt surface under the conditions of its high turbulence. , 2017, , .		2
7	Approaches to the development of environmentally friendly and resource-saving technology for solargrade silicon production. MRS Advances, 2019, 4, 1937-1947.	0.9	2
8	Electric Explosion of Metal in a Pulsed Magnetic Field for Coating Deposition via Sputtering. Journal of Surface Investigation, 2018, 12, 540-543.	0.5	2
9	Long time stability of electrical contact base on ruthenium nanoscale films at various coating roughness. , 2015, , .		1
10	Long-Time Stability of Catalytic Coatings on the Basis of Nanoporous TiO2 under the Influence of Corona Discharge Plasma in Air. MRS Advances, 2016, 1, 1307-1312.	0.9	1
11	Study of Plasma-chemical Purification of Metallurgical-grade Silicon under the Conditions of Electromagnetic Stirring by Mathematical Modeling. Energy Procedia, 2018, 150, 2-8.	1.8	1
12	Study of Electromagnetic Stirring of Silicon Melt by Mathematic Modeling. , 2018, , .		1
13	Mathematical modeling of vacuum refining of silicon melt under the conditions of electromagnetic stirring. AIP Conference Proceedings, 2018, , .	0.4	1
14	Study of the Temperature Influence on the Efficiency of Silicon Vacuum Refining under Electromagnetic Stirring. , 2019, , .		1
15	An Effect of Co–W Barrier Sublayer on the Functional Characteristics of Au–Ru Contact Coatings. Coatings, 2022, 12, 161.	2.6	1
16	Multilayer nanosized galvanic coatings of electrical contacts of durable magnetically operated switches. , 2014, , .		0
17	Catalytically Active Coatings on the Basis of Titanium Dioxide for Ozone Destruction. Materials Research Society Symposia Proceedings, 2015, 1806, 31-40.	0.1	0
18	Study of the Efficiency of Hybrid Energy Storage Systems on the Basis of Electric Double Layer Capacitor and Accumulator. Materials Research Society Symposia Proceedings, 2015, 1773, 41-46.	0.1	0

EVGENY SLIVKIN

#	Article	IF	CITATIONS
19	Increase of the magnetic sensitivity of magnetically controlled MEMS switches. , 2015, , .		Ο
20	Mathematical Modeling of Thermomechanical Stresses of Multilayer Erosion-Resistant Electrode Coatings of Magnetically Controlled MEMS. Materials Research Society Symposia Proceedings, 2015, 1753, 18.	0.1	0
21	Influence of Spin-Orbit Coupling on Electronic Structure of Polyyne and Cumulene Carbynes. MRS Advances, 2016, 1, 1353-1357.	0.9	0
22	Formation of TiO2 Electrically Insulated Oxide Coatings in Mode of Alternating Current Application. MRS Advances, 2016, 1, 3163-3168.	0.9	0
23	Erosion-Resistant Electrode Coatings of Vacuum and Gas-Discharge Switching Devices. MRS Advances, 2016, 1, 1177-1182.	0.9	0
24	Electrodeposition of Ni-Mo Defect-Free Alloy from Ammonium-Citrate Electrolyte in Pulse Current Mode. MRS Advances, 2017, 2, 3585-3589.	0.9	0
25	The Effect of Electrochemical Modification of the Glass Carbon Surface in Conditions of Chemisorption of Fluorine-Containing Nanogroups on its Electrophysical Properties. MRS Advances, 2017, 2, 3335-3339.	0.9	0
26	Research of the TiO ₂ nanotubes formation by AC-DC electrochemical anodizing. Journal of Physics: Conference Series, 2017, 857, 012048.	0.4	0
27	Study of Nanoporous Carbon Fabrics for Rechargeable Energy Storage Capacitors. MRS Advances, 2018, 3, 3227-3232.	0.9	0
28	Optimization of boron, phosphorus, carbon extraction from metallurgical-grade silicon. AIP Conference Proceedings, 2019, , .	0.4	0
29	Influence of pulse electrolysis modes on structure and properties of coatings based on Co-Mo alloy obtained from citrate pyrophosphate electrolyte. Journal of Physics: Conference Series, 2019, 1281, 012021.	0.4	0
30	Peculiarities of deposition of thick coatings based on binary Co-W alloy. Journal of Physics: Conference Series, 2019, 1281, 012022.	0.4	0
31	The Features of TiO2 Films Structure Formation under Conditions of Electrochemical Anodizing by Direct Current with Variable Component Application. MRS Advances, 2016, 1, 3127-3131.	0.9	0
32	Increase of Magnetic Sensitivity of Magnetically Controlled MEMS Switches. MRS Advances, 2016, 1, 2393-2399.	0.9	0
33	EXPERIMENTAL STUDY OF SILICON MELT MOTION RATE IN THE CONDITIONS OF MAGNETOHYDRODYNAMIC MIXING. Vestnik of Ryazan State Radio Engineering University, 2019, 69, 211-220.	0.1	0
34	MATHEMATICAL MODELING OF STRUCTURAL ELEMENTS ĐĐ¢ MAGNETIC-HYDRODYNAMIC MIXING SYSTEM FOR SILICON MELT IN EXPERIMENTAL SYSTEM OF DIRECTIONAL SOLIDIFICATION. Vestnik of Ryazan State Radio Engineering University, 2020, 74, 119-128.	0.1	0