
José C Conesa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2349894/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sulfide-Based Photocatalysts Using Visible Light, with Special Focus on In2S3, SnS2 and ZnIn2S4. Catalysts, 2022, 12, 40.	1.6	6
2	Efficient Production of Solar Hydrogen Peroxide Using Piezoelectric Polarization and Photoinduced Charge Transfer of Nanopiezoelectrics Sensitized by Carbon Quantum Dots. Advanced Science, 2022, 9, e2105792.	5.6	26
3	Nanostructured sulfide based photocatalysts using visible light for environmental and energy purposes. , 2021, , 267-282.		0
4	V-Substituted ZnIn2S4: A (Visible+NIR) Light-Active Photocatalyst. Photochem, 2021, 1, 1-9.	1.3	2
5	High Performance Generation of H ₂ O ₂ under Piezophototronic Effect with Multi‣ayer In ₂ S ₃ Nanosheets Modified by Spherical ZnS and BaTiO ₃ Nanopiezoelectrics. Small Methods, 2021, 5, e2100269.	4.6	34
6	Computing with DFT Band Offsets at Semiconductor Interfaces: A Comparison of Two Methods. Nanomaterials, 2021, 11, 1581.	1.9	6
7	Divalent chromium in the octahedral positions of the novel hybrid perovskites CH3NH3Pb1-Cr (Br,Cl)3 (xÂ= 0.25, 0.5): Induction of narrow bands inside the bandgap. Journal of Alloys and Compounds, 2020, 821, 153414.	2.8	11
8	Spinel-Type nitride compounds with improved features as solar cell absorbers. Acta Materialia, 2020, 197, 316-329.	3.8	7
9	Atomic-Scale Model and Electronic Structure of Cu2O/CH3NH3PbI3 Interfaces in Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 44648-44657.	4.0	16
10	Theoretical Study of the Catalytic Performance of Activated Layered Double Hydroxides in the Cyanoethylation of Alcohols. Journal of Physical Chemistry C, 2019, 123, 8777-8784.	1.5	12
11	Influence of chromium hyperdoping on the electronic structure of CH3NH3PbI3 perovskite: a first-principles insight. Scientific Reports, 2018, 8, 2511.	1.6	13
12	H2 photo-production from methanol, ethanol and 2-propanol: Pt-(Nb)TiO2 performance under UV and visible light. Molecular Catalysis, 2018, 446, 88-97.	1.0	28
13	Measuring and interpreting quantum efficiency of acid blue 9 photodegradation using TiO2-based catalysts. Applied Catalysis A: General, 2018, 550, 38-47.	2.2	11
14	Theoretical band alignment in an intermediate band chalcopyrite based material. Applied Surface Science, 2017, 424, 132-136.	3.1	15
15	Measuring and interpreting quantum efficiency for hydrogen photo-production using Pt-titania catalysts. Journal of Catalysis, 2017, 347, 157-169.	3.1	68
16	Nanostructured Catalysts Based on Combinations of Cobalt and Cerium Oxides for CO Oxidation and Effect of the Presence of Water. Journal of Nanoscience and Nanotechnology, 2017, 17, 3816-3823.	0.9	7
17	UV and visible hydrogen photo-production using Pt promoted Nb-doped TiO 2 photo-catalysts: Interpreting quantum efficiency. Applied Catalysis B: Environmental, 2017, 216, 133-145.	10.8	41
18	Laccase-Catalyzed Bioelectrochemical Oxidation of Water Assisted with Visible Light. ACS Catalysis, 2017, 7, 4881-4889.	5.5	20

#	Article	IF	CITATIONS
19	Ferroelectric Domains May Lead to Two-Dimensional Confinement of Holes, but not of Electrons, in CH ₃ NH ₃ PbI ₃ Perovskite. Journal of Physical Chemistry C, 2017, 121, 26698-26705.	1.5	11
20	Synthesis and Characterization of V-Doped β-In ₂ S ₃ Thin Films on FTO Substrates. Journal of Physical Chemistry C, 2016, 120, 28753-28761.	1.5	31
21	Modeling of Thermal Effect on the Electronic Properties of Photovoltaic Perovskite CH ₃ NH ₃ PbI ₃ : The Case of Tetragonal Phase. Journal of Physical Chemistry C, 2016, 120, 7976-7986.	1.5	25
22	Electronic band alignment at CuGaS2 chalcopyrite interfaces. Computational Materials Science, 2016, 121, 79-85.	1.4	16
23	Electronic Structure of the (Undoped and Fe-Doped) NiOOH O ₂ Evolution Electrocatalyst. Journal of Physical Chemistry C, 2016, 120, 18999-19010.	1.5	52
24	In Situ Determination of Photobioproduction of H2by In2S3-[NiFeSe] Hydrogenase fromDesulfovibrio vulgarisHildenborough Using Only Visible Light. ACS Catalysis, 2016, 6, 5691-5698.	5.5	37
25	Near-ambient XPS characterization of interfacial copper species in ceria-supported copper catalysts. Physical Chemistry Chemical Physics, 2015, 17, 29995-30004.	1.3	74
26	Preferential oxidation of CO in excess H2 over CuO/CeO2 catalysts: Performance as a function of the copper coverage and exposed face present in the CeO2 support. Catalysis Today, 2014, 229, 104-113.	2.2	76
27	V-substituted In ₂ S ₃ : an intermediate band material with photocatalytic activity in the whole visible light range. Journal of Materials Chemistry A, 2014, 2, 8236-8245.	5.2	42
28	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi mathvariant="normal">CH<mml:msub><mml:mrow /><mml:mn>3</mml:mn></mml:mrow </mml:msub><mml:mi mathvariant="normal">NH<mml:msub><mml:mrow< td=""><td>1.1</td><td>245</td></mml:mrow<></mml:msub></mml:mi </mml:mi 	1.1	245
29	/> <mml:mn>3</mml:mn> <mml:mi mathyariant="pormal">Ph/<mml:msub><mml:mr Improving the CO-PROX Performance of Inverse CeO₂/CuO Catalysts: Doping of the CuO Component with Zn. Journal of Physical Chemistry C, 2014, 118, 9030-9041.</mml:mr </mml:msub></mml:mi 	1.5	34
30	Band structures and nitrogen doping effects in zinc titanate photocatalysts. Catalysis Today, 2013, 208, 11-18.	2.2	47
31	Preferential oxidation of CO in excess H2 over CuO/CeO2 catalysts: Characterization and performance as a function of the exposed face present in the CeO2 support. Applied Catalysis B: Environmental, 2013, 130-131, 224-238.	10.8	146
32	Characterization of Active Sites/Entities and Redox/Catalytic Correlations in Copper-Ceria-Based Catalysts for Preferential Oxidation of CO in H2-Rich Streams. Catalysts, 2013, 3, 378-400.	1.6	56
33	Modeling with Hybrid Density Functional Theory the Electronic Band Alignment at the Zinc Oxide–Anatase Interface. Journal of Physical Chemistry C, 2012, 116, 18884-18890.	1.5	76
34	Operando DRIFTS study of the redox and catalytic properties of CuO/Ce _{1â^x} Tb _x O _{2â^Î<} (x = 0–0.5) catalysts: evidence of an induction step during CO oxidation. Physical Chemistry Chemical Physics, 2012, 14, 2144-2151.	1.3	28
35	Spectral response and stability of In2S3 as visible light-active photocatalyst. Catalysis Communications, 2012, 20, 1-5.	1.6	23
36	Redox and catalytic properties of CuO/CeO2 under CO+O2+NO: Promoting effect of NO on CO oxidation. Catalysis Today, 2012, 180, 81-87.	2.2	32

#	Article	IF	CITATIONS
37	Hydrothermally synthesized nanocrystalline tin disulphide as visible light-active photocatalyst: Spectral response and stability. Applied Catalysis A: General, 2012, 415-416, 111-117.	2.2	43
38	Thermodynamics of zinc insertion in CuGaS2:Ti, used as a modulator agent in an intermediate-band photovoltaic material. Computational and Theoretical Chemistry, 2011, 975, 134-137.	1.1	10
39	V-doped SnS2: a new intermediate band material for a better use of the solar spectrum. Physical Chemistry Chemical Physics, 2011, 13, 20401.	1.3	80
40	Supported Metals in Vehicle Emission Control. Catalytic Science Series, 2011, , 493-552.	0.6	1
41	Permanent magnetism in phosphine- and chlorine-capped gold: from clusters to nanoparticles. Journal of Nanoparticle Research, 2010, 12, 1307-1318.	0.8	21
42	Visible Light-Responsive Titanium Oxide Photocatalysts: Preparations Based on Chemical Methods. Nanostructure Science and Technology, 2010, , 277-299.	0.1	0
43	Magnetometry and electron paramagnetic resonance studies of phosphine- and thiol-capped gold nanoparticles. Journal of Applied Physics, 2010, 107, 064303.	1.1	11
44	The Relevance of Dispersion Interactions for the Stability of Oxide Phases. Journal of Physical Chemistry C, 2010, 114, 22718-22726.	1.5	58
45	Structural, catalytic/redox and electrical characterization of systems combining Cu–Ni with CeO2 or Ce1â^'xMxO2â^1´ (M=Gd or Tb) for direct methane oxidation. Journal of Power Sources, 2009, 192, 70-77.	4.0	25
46	Surface anion vacancies on ceria: Quantum modelling of mutual interactions and oxygen adsorption. Catalysis Today, 2009, 143, 315-325.	2.2	60
47	Transition-Metal-Substituted Indium Thiospinels as Novel Intermediate-Band Materials: Prediction and Understanding of Their Electronic Properties. Physical Review Letters, 2008, 101, 046403.	2.9	129
48	Thermodynamics of the Formation of Ti- and Cr-doped CuGaS ₂ Intermediate-band Photovoltaic Materials. Journal of Physical Chemistry C, 2008, 112, 9525-9529.	1.5	50
49	Synthesis and Spectral Properties of Nanocrystalline V-Substituted In2S3, a Novel Material for More Efficient Use of Solar Radiation. Chemistry of Materials, 2008, 20, 5125-5127.	3.2	95
50	Characterization by Ab Initio Calculations of an Intermediate Band Material Based on Chalcopyrite Semiconductors Substituted by Several Transition Metals. Journal of Solar Energy Engineering, Transactions of the ASME, 2007, 129, 314.	1.1	22
51	Structureâ^'Activity Relationship in Nanostructured Copperâ^'Ceria-Based Preferential CO Oxidation Catalysts. Journal of Physical Chemistry C, 2007, 111, 11026-11038.	1.5	296
52	Catalytic properties of monometallic copper and bimetallic copper-nickel systems combined with ceria and Ce-X (X=Gd, Tb) mixed oxides applicable as SOFC anodes for direct oxidation of methane. Journal of Power Sources, 2007, 169, 9-16.	4.0	36
53	O2-probe EPR as a method for characterization of surface oxygen vacancies in ceria-based catalysts. Research on Chemical Intermediates, 2007, 33, 775-791.	1.3	26
54	Theoretical modelling of intermediate band solar cell materials based on metal-doped chalcopyrite compounds. Thin Solid Films, 2007, 515, 6280-6284.	0.8	96

#	Article	IF	CITATIONS
55	First principles calculation of isolated intermediate bands formation in a transition metal-doped chalcopyrite-type semiconductor. Physica Status Solidi (A) Applications and Materials Science, 2006, 203, 1395-1401.	0.8	77
56	Obtaining Ni Nanoparticles on 3Y-TZP Powder from Nickel Salts. Journal of the American Ceramic Society, 2006, 89, 144-150.	1.9	10
57	First-principles investigation of isolated band formation in half-metallicTixGa1â^'xP(x=0.3125–0.25). Physical Review B, 2006, 73, .	1.1	56
58	Energetics of formation of TiGa3As4 and TiGa3P4 intermediate band materials. Journal of Chemical Physics, 2006, 124, 014711.	1.2	47
59	AB-Initio Modeling of Intermediate Band Materials Based on Metal-Doped Chalcopyrite Compounds. , 2006, , .		1
60	Preferential oxidation of CO in a H2-rich stream over CuO/CeO2 and CuO/(Ce,M)Ox (M=Zr, Tb) catalysts. Journal of Power Sources, 2005, 151, 32-42.	4.0	115
61	Cerium–terbium mixed oxides as potential materials for anodes in solid oxide fuel cells. Journal of Power Sources, 2005, 151, 43-51.	4.0	64
62	FULLSPECTRUM: a new PV wave making more efficient use of the solar spectrum. Solar Energy Materials and Solar Cells, 2005, 87, 467-479.	3.0	40
63	The effect of Ni in Pd–Ni/(Ce,Zr)O/AlO catalysts used for stoichiometric CO and NO elimination. Part 1: Nanoscopic characterization of the catalysts. Journal of Catalysis, 2005, 235, 251-261.	3.1	44
64	Nanostructured Tiâ^'W Mixed-Metal Oxides:  Structural and Electronic Properties. Journal of Physical Chemistry B, 2005, 109, 6075-6083.	1.2	90
65	Light-off behaviour of PdO/γ-Al2O3 catalysts for stoichiometric CO–O2 and CO–O2–NO reactions: a combined catalytic activity–in situ DRIFTSÂstudy. Journal of Catalysis, 2004, 221, 85-92.	3.1	60
66	Role of the state of the metal component on the light-off performance ofÂPd-based three-way catalysts. Journal of Catalysis, 2004, 221, 594-600.	3.1	62
67	EPR study of the photoassisted formation of radicals on CeO2 nanoparticles employed for toluene photooxidation. Applied Catalysis B: Environmental, 2004, 50, 167-175.	10.8	128
68	Catalytic Properties of Ag/Al2O3Catalysts for Lean NOxReduction Processes and Characterisation of Active Silver Species. Topics in Catalysis, 2004, 30/31, 65-70.	1.3	13
69	Influence of the nature of the Ce-promoter on the behavior of Pd and Pd–Cr TWC systems. Applied Catalysis A: General, 2004, 259, 207-220.	2.2	21
70	First principles calculations of electronic structures and metal mobility of NaxSi46 and NaxSi34 clathrates. Journal of Chemical Physics, 2004, 120, 6142-6151.	1.2	25
71	Interfacial Redox Processes under CO/O2in a Nanoceria-Supported Copper Oxide Catalyst. Journal of Physical Chemistry B, 2004, 108, 17983-17991.	1.2	155
72	Confinement effects in quasi-stoichiometric CeO2nanoparticles. Physical Chemistry Chemical Physics, 2004, 6, 3524-3529.	1.3	95

#	Article	IF	CITATIONS
73	Redox interplay at copper oxide-(Ce,Zr)Ox interfaces: influence of the presence of NO on the catalytic activity for CO oxidation over CuO/CeZrO4. Journal of Catalysis, 2003, 214, 261-272.	3.1	83
74	Behavior of bimetallic Pd?Cr/Al2O3 and Pd?Cr/(Ce,Zr)Ox/Al2O3 catalysts for CO and NO elimination. Journal of Catalysis, 2003, 214, 220-233.	3.1	45
75	Nature and catalytic role of active silver species in the lean NOx reduction with C3H6 in the presence of water. Journal of Catalysis, 2003, 217, 310-323.	3.1	85
76	Structural, Morphological, and Oxygen Handling Properties of Nanosized Ceriumâ^'Terbium Mixed Oxides Prepared by Microemulsion. Chemistry of Materials, 2003, 15, 4309-4316.	3.2	81
77	Influence of preparation method on surface and bulk properties of sunlight-active Ti–W mixed oxide photocatalysts. Physical Chemistry Chemical Physics, 2003, 5, 2913-2921.	1.3	12
78	Computer Modeling of Local Level Structures in (Ce, Zr) Mixed Oxide. Journal of Physical Chemistry B, 2003, 107, 8840-8853.	1.2	33
79	Spectroscopic Characterization of Heterogeneity and Redox Effects in Zirconiumâ^'Cerium (1:1) Mixed Oxides Prepared by Microemulsion Methods. Journal of Physical Chemistry B, 2003, 107, 2667-2677.	1.2	47
80	Density Functional Calculations for Modeling the Oxidized States of the Active Site of Nickelâ^'Iron Hydrogenases. 1. Verification of the Method with Paramagnetic Ni and Co Complexes. Inorganic Chemistry, 2002, 41, 4417-4423.	1.9	28
81	Density Functional Calculations for Modeling the Active Site of Nickelâ^'Iron Hydrogenases. 2. Predictions for the Unready and Ready States and the Corresponding Activation Processes. Inorganic Chemistry, 2002, 41, 4424-4434.	1.9	68
82	STUDIES OF CERIA-CONTAINING CATALYSTS USING MAGNETIC RESONANCE AND X-RAY SPECTROSCOPIES. Catalytic Science Series, 2002, , 169-216.	0.6	11
83	Computer Modeling ofallo-Si andallo-Ge Polymorphs. Journal of Physical Chemistry B, 2002, 106, 3402-3409.	1.2	26
84	Thermal behavior of (Ce,Zr)Ox/Al2O3 complex oxides prepared by a microemulsion method. Physical Chemistry Chemical Physics, 2002, 4, 2473-2481.	1.3	43
85	Effects of thermal pretreatment on the redox behaviour of Ce0.5Zr0.5O2: isotopic and spectroscopic studies. Physical Chemistry Chemical Physics, 2002, 4, 149-159.	1.3	57
86	Ce–Zr–Ca Ternary Mixed Oxides: Structural Characteristics and Oxygen Handling Properties. Journal of Catalysis, 2002, 211, 326-334.	3.1	50
87	Influence of thermal sintering on the activity for CO–O2 and CO–O2–NO stoichiometric reactions over Pd/(Ce, Zr)Ox/Al2O3 catalysts. Applied Catalysis B: Environmental, 2002, 38, 151-158.	10.8	34
88	Effects of Copper on the Catalytic Properties of Bimetallic Pd–Cu/(Ce,Zr)Ox/Al2O3 and Pd–Cu/(Ce,Zr)Ox Catalysts for CO and NO Elimination. Journal of Catalysis, 2002, 206, 281-294.	3.1	59
89	Nanosize Ti–W Mixed Oxides: Effect of Doping Level in the Photocatalytic Degradation of Toluene Using Sunlight-Type Excitation. Journal of Catalysis, 2002, 212, 1-9.	3.1	204
90	Surface properties of CeZrO4-based materials employed as catalysts supports. Journal of Alloys and Compounds, 2001, 323-324, 605-609.	2.8	13

#	Article	IF	CITATIONS
91	New Strategies for the Improvement of Automobile Catalysts. International Journal of Molecular Sciences, 2001, 2, 251-262.	1.8	9
92	Visible light-activated nanosized doped-TiO2 photocatalysts. Chemical Communications, 2001, , 2718-2719.	2.2	219
93	Fourier Transform Infrared Study of the Performance of Nanostructured TiO2 Particles for the Photocatalytic Oxidation of Gaseous Toluene. Journal of Catalysis, 2001, 202, 413-420.	3.1	317
94	EPR Study of CO and O2 Interaction with Supported Au Catalysts. Journal of Catalysis, 2001, 203, 168-174.	3.1	119
95	Effect of Thermal Sintering on Light-Off Performance of Pd/(Ce,Zr)Ox/Al2O3 Three-Way Catalysts: Model Gas and Engine Tests. Journal of Catalysis, 2001, 204, 238-248.	3.1	90
96	New Pd/CexZr1â^'xO2/Al2O3 three-way catalysts prepared by microemulsion. Applied Catalysis B: Environmental, 2001, 31, 51-60.	10.8	112
97	New Pd/CexZr1â^xO2/Al2O3 three-way catalysts prepared by microemulsion. Applied Catalysis B: Environmental, 2001, 31, 39-50.	10.8	131
98	Oxygen handling properties of Ce-Ca mixed oxides solutions. Studies in Surface Science and Catalysis, 2001, , 347-354.	1.5	13
99	CO and NO elimination over Pd-Cu catalysts. Studies in Surface Science and Catalysis, 2000, 130, 1325-1330.	1.5	6
100	Study of the lean NOx reduction with C3H6 in the presence of water over silver/alumina catalysts prepared from inverse microemulsions. Applied Catalysis B: Environmental, 2000, 28, 29-41.	10.8	119
101	EPR study on oxygen handling properties of ceria, zirconia and Zr–Ce (1 : 1) mixed oxide samples. Catalysis Letters, 2000, 65, 197-204.	1.4	81
102	Influence of the Preparation Method, Outgassing Treatment, and Adsorption of NO and/or O2 on the Cu2+ Species in Cu-ZSM-5: An EPR Study. Journal of Catalysis, 2000, 190, 352-363.	3.1	32
103	Behavior of Palladium–Copper Catalysts for CO and NO Elimination. Journal of Catalysis, 2000, 190, 387-395.	3.1	62
104	Structural Characteristics and Redox Behavior of CeO2–ZrO2/Al2O3 Supports. Journal of Catalysis, 2000, 194, 385-392.	3.1	202
105	Comparative Study on Redox Properties and Catalytic Behavior for CO Oxidation of CuO/CeO2 and CuO/ZrCeO4 Catalysts. Journal of Catalysis, 2000, 195, 207-216.	3.1	357
106	Surface structure and redox chemistry of ceria-containing automotive catalytic systems. Research on Chemical Intermediates, 2000, 26, 103-111.	1.3	7
107	Chloride-induced modifications of the properties of rhodia/ceria catalysts. Topics in Catalysis, 2000, 11/12, 205-212.	1.3	17
108	Structural and Redox Properties of Ceria in Alumina-Supported Ceria Catalyst Supports. Journal of Physical Chemistry B, 2000, 104, 4038-4046.	1.2	204

#	Article	IF	CITATIONS
109	Characterization of surface defects in CeO2 modified by incorporation of precious metals from chloride salts precursors: an EPR study using oxygen as probe molecule. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999, 158, 67-74.	2.3	38
110	Spectroscopic Study of a Cu/CeO2Catalyst Subjected to Redox Treatments in Carbon Monoxide and Oxygen. Journal of Catalysis, 1999, 182, 367-377.	3.1	237
111	Influence of Ceria on Pd Activity for the CO+O2 Reaction. Journal of Catalysis, 1999, 187, 474-485.	3.1	151
112	Characterization of High Surface Area Zrâ^'Ce (1:1) Mixed Oxide Prepared by a Microemulsion Method. Langmuir, 1999, 15, 4796-4802.	1.6	194
113	Influence of Ceria Dispersion on the Catalytic Performance of Cu/(CeO2)/Al2O3 Catalysts for the CO Oxidation Reaction Studies in Surface Science and Catalysis, 1998, , 591-600.	1.5	33
114	Interaction of CO and NO with PdCu(111) Surfaces. Journal of Physical Chemistry B, 1998, 102, 8017-8023.	1.2	74
115	Effect of Copperâ^'Ceria Interactions on Copper Reduction in a Cu/CeO2/Al2O3 Catalyst Subjected to Thermal Treatments in CO. Journal of Physical Chemistry B, 1998, 102, 809-817.	1.2	105
116	Influence of Mutual Platinum-Dispersed Ceria Interactions on the Promoting Effect of Ceria for the CO Oxidation Reaction in a Pt/CeO2/Al2O3 Catalyst. Journal of Physical Chemistry B, 1998, 102, 4357-4365.	1.2	79
117	Study of the Heterometallic Bond Nature in PdCu(111) Surfaces. Journal of Physical Chemistry B, 1998, 102, 141-147.	1.2	55
118	Spectroscopic Study of Active Phase-Support Interactions on a RhOx/CeO2Catalyst: Evidence for Electronic Interactions. Journal of Catalysis, 1997, 168, 364-373.	3.1	40
119	Influence of Ceria on the Dispersion and Reduction/Oxidation Behaviour of Alumina-Supported Copper Catalysts. Journal of Catalysis, 1997, 172, 146-159.	3.1	96
120	Effect of surface relaxation and rumpling on the vibrational spectrum of NO adsorbed on a Cu2O surface. Journal of Molecular Catalysis A, 1997, 119, 87-93.	4.8	1
121	Effect of the Madelung potential value and symmetry on the adsorption properties of adsorbate/oxide systems. Surface Science, 1996, 349, 207-215.	0.8	24
122	Spectroscopic study of oxygen adsorption on CeO2/γ-Al2O3catalyst supports. Journal of the Chemical Society, Faraday Transactions, 1996, 92, 1619-1626.	1.7	59
123	Electron paramagnetic resonance spectroscopy study of the adsorption of O2 and CO on a Pt/CeO2/Al2O3 catalyst. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1996, 115, 215-221.	2.3	18
124	Effect of outgassing treatments on the surface reactivity of catalysts: CO adsorption. Vacuum, 1995, 46, 1201-1204.	1.6	27
125	Effect of the CeO2 dispersion on alumina on its reactivity for co and no conversion. Studies in Surface Science and Catalysis, 1995, , 215-227.	1.5	8
126	Structural aspects of the interaction of methyl thiol and dimethyldisulphide with Ni(111). Journal of Physics Condensed Matter, 1995, 7, 7781-7796.	0.7	28

#	Article	IF	CITATIONS
127	Spectroscopic study of oxygen adsorption as a method to study surface defects on CeO2. Journal of the Chemical Society, Faraday Transactions, 1995, 91, 1669-1678.	1.7	137
128	NO reaction at surface oxygen vacancies generated in cerium oxide. Journal of the Chemical Society, Faraday Transactions, 1995, 91, 1679-1687.	1.7	231
129	Bonding geometry and mechanism of NO adsorbed on Cu2O(111): NO activation by Cu+ cations. Journal of Chemical Physics, 1994, 101, 10134-10139.	1.2	28
130	ESR study of photo-oxidation of phenol at low temperature on polycrystalline titanium dioxide. Studies in Surface Science and Catalysis, 1994, 82, 693-701.	1.5	9
131	Structure determination of Ni(111)c(4 × 2)-CO and its implications for the interpretation of vibrational spectroscopic data. Surface Science, 1994, 311, 337-348.	0.8	105
132	Effect of the state of vanadium on the properties of titanium phosphate-based catalysts for oxidation of toluene. Studies in Surface Science and Catalysis, 1994, 82, 729-737.	1.5	1
133	Physicochemical Study of Structural Disorder in Vanadyl Pyrophosphate. Journal of Catalysis, 1993, 141, 671-687.	3.1	30
134	Is the frequency of the internal mode of an adsorbed diatomic molecule a reliable guide to its local adsorption site?. Journal of Electron Spectroscopy and Related Phenomena, 1993, 64-65, 75-83.	0.8	80
135	Influence of the support on the metal dispersion in Rh/CeO2 catalysts. Applied Surface Science, 1993, 70-71, 245-249.	3.1	7
136	Electron spin resonance study of radicals formed during photo-oxidation of phenol on TiO2. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1993, 78, 73-83.	2.3	12
137	The bonding mechanism of NO to Cu(111). Surface Science, 1993, 280, 441-449.	0.8	28
138	Effect of Calcination on V-O-Ti-P Catalysts. Studies in Surface Science and Catalysis, 1993, 75, 2717-2720.	1.5	2
139	Structure determination for PF3absorption on Ni(111). Journal of Physics Condensed Matter, 1992, 4, 6509-6522.	0.7	19
140	Local site identification for NO on Ni(111) in vibrationally distinct adsorption states. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1992, 10, 2445-2450.	0.9	19
141	Structural determination of a molecular adsorbate by photoelectron diffraction: Ammonia on Ni{111}. Physical Review B, 1992, 46, 4836-4843.	1.1	74
142	The growth of thin Ti and TiOx films on Pt(111): Morphology and oxidation states. Surface Science, 1992, 273, 31-39.	0.8	23
143	Effect of oxidized rhodium on oxygen adsorption on cerium oxide. Vacuum, 1992, 43, 437-440.	1.6	23
144	Single local site structure for vibrationally distinct adsorption states: NO on Ni(111). Chemical Physics Letters, 1992, 192, 259-264.	1.2	90

#	Article	IF	CITATIONS
145	Effect of chlorine impurities on the properties of CeO2. Surface Science, 1991, 251-252, 990-994.	0.8	13
146	Metal-support interactions in supported nickel catalysts: a FMR study. Surface Science, 1991, 251-252, 1018-1022.	0.8	3
147	Dinitrogen photoreduction to ammonia over titanium dioxide powders doped with ferric ions. The Journal of Physical Chemistry, 1991, 95, 274-282.	2.9	287
148	Adsorption of nitric oxide and ammonia on vanadia-titania catalysts: ESR and XPS studies of adsorption. The Journal of Physical Chemistry, 1991, 95, 240-246.	2.9	63
149	Chapter 4 Characterization of Catalyst Structures by Extended X-Ray Absorption Spectroscopy. Studies in Surface Science and Catalysis, 1990, , A225-A297.	1.5	11
150	Phase transformations of vanadia-titania catalysts induced by phosphoric acid additive. Journal of Catalysis, 1989, 120, 457-464.	3.1	19
151	EXAFS/XANES studies of the influence of the drying pretreatments on the reducibility of Pt/Al2O3 and Pt-Re/Al2O3 catalysts. Physica B: Condensed Matter, 1989, 158, 158-159.	1.3	4
152	EXAFS study of catalyst preparation procedure in Ni-silica and Ni-titania. Physica B: Condensed Matter, 1989, 158, 174-175.	1.3	7
153	Influence of phosphorus addition on the properties of Vî—,Moî—,TiO2 catalysts. Vacuum, 1989, 39, 669-671.	1.6	Ο
154	Photoreactivity of Iron-Doped Titanium Dioxide Powders for Dinitrogen Reduction to Ammonia. Studies in Surface Science and Catalysis, 1989, , 307-317.	1.5	6
155	The g tensor in disubstituted phenothiazine cation radicals. Substituent and packing effects. Spectrochimica Acta Part A: Molecular Spectroscopy, 1988, 44, 823-827.	0.1	Ο
156	The role of oxygen vacancies during the decomposition of RhCl3/TiO2 precursor: study by XPS, IR, EPR and NMR Catalysis Today, 1988, 2, 663-673.	2.2	16
157	Quantum chemical assessment of the structure of an oxygen radical adsorbed on titania and detected by ESR spectroscopy. Journal of Molecular Structure, 1988, 174, 337-342.	1.8	1
158	Structural changes at the titania surface and their relationship to metal-support interactions in rhodium-titania catalysts. The Journal of Physical Chemistry, 1988, 92, 4685-4690.	2.9	21
159	Hydrogen-induced titanium oxide migration onto metallic rhodium in real rhodium/titania catalysts. The Journal of Physical Chemistry, 1987, 91, 6625-6628.	2.9	37
160	Spillover and Electronic Effects for H ₂ Weakly Adsorbed on Metal/Semiconductor Catalysts: Comparison of ESR and NMR Data for the Rh/TiO ₂ and Rh/SrTiO ₃ Systems*. Zeitschrift Fur Physikalische Chemie, 1987, 152, 83-92.	1.4	7
161	Influence of synthetic conditions and doping-induced modifications in the structure and electrical properties of electret-forming polymers. Synthetic Metals, 1987, 18, 777-783.	2.1	1
162	The role of dopant environment in electret-forming polymers. Synthetic Metals, 1987, 21, 361-372.	2.1	1

#	Article	IF	CITATIONS
163	EPR study of the surface reactivity and reducibility under vacuum of a RhCl3/SrTiO3 catalyst precursor. Vacuum, 1987, 37, 469-471.	1.6	1
164	Electron spin resonance study of the influence of the nitrogen substituent on the conformation and spin density distribution of phenothiazine derivatives. Journal of the Chemical Society Perkin Transactions II, 1986, , 391-395.	0.9	7
165	Molecular structure of the alimemazine cation radical. Journal of Molecular Structure, 1986, 142, 431-434.	1.8	0
166	Paramagnetic oxygen complexes on RhCl3/TiO2 catalyst precursors. Journal of Molecular Structure, 1986, 143, 255-258.	1.8	4
167	X-ray diffraction and electron paramagnetic resonance study of chlorpromazine cation radical. The Journal of Physical Chemistry, 1985, 89, 1178-1182.	2.9	16
168	Influence of the hydrogen uptake by the support on metal-support interactions in catalysts. Comparison of the rhodium/titanium dioxide and rhodium/strontium titanate (SrTiO3) systems. The Journal of Physical Chemistry, 1985, 89, 5427-5433.	2.9	53
169	Photo-Adsorption of Oxygen on Acid and Basic TiO2 Surfaces. Studies in Surface Science and Catalysis, 1985, , 113-126.	1.5	11
170	Oxygen photo-adsorption on SrTiO3. Ferroelectrics, 1984, 56, 121-124.	0.3	2
171	EPR study of the phenothiazine cation radical. Spectrochimica Acta Part A: Molecular Spectroscopy, 1984, 40, 1021-1024.	0.1	16
172	Magnetic resonance studies of hydrogen-reduced rhodium/titanium dioxide catalysts. The Journal of Physical Chemistry, 1984, 88, 2986-2992.	2.9	57
173	Study of the Mechanism of Water Splitting on UV-Irradiated Rh/TiO2. Studies in Surface Science and Catalysis, 1984, , 335-346.	1.5	8
174	Structural study by EPR of promazine cation radical. Journal of Molecular Structure, 1983, 98, 165-174.	1.8	10
175	Reversible Adsorption of H2 on Rh/TiO2. Studies in Surface Science and Catalysis, 1983, 17, 149-161.	1.5	12
176	Reversible titanium(3+) formation by hydrogen adsorption on M/anatase (TiO2) catalysts. The Journal of Physical Chemistry, 1982, 86, 1392-1395.	2.9	155
177	Electron spin resonance study of 10-(3-dimethylamino-2-methylpropyl)phenothiazine cation radical in solution. Journal of the Chemical Society Perkin Transactions II, 1982, , 1517.	0.9	6
178	EPR study of the alimemazine cation radical. Magnetic Resonance in Chemistry, 1982, 20, 162-165.	0.7	5
179	Reactivity of CO with A Rh/TiO2 catalyst. Journal of Molecular Catalysis, 1982, 17, 231-240.	1.2	28
180	Lineshapes of powder EPR spectra with large anisotropy: Cu(II) ions in Y zeolite. Journal of Magnetic Resonance, 1979, 33, 295-301.	0.5	2

11

#	Article	IF	CITATIONS
181	Electron spin resonance studies of copper-exchanged Y zeolites. Part 2.—Interactions with Celll ions inside the zeolite framework. Journal of the Chemical Society Faraday Transactions I, 1979, 75, 423.	1.0	8
182	Electron spin resonance of copper-exchanged Y zeolites. Part 1.—Behaviour of the cation during dehydration. Journal of the Chemical Society Faraday Transactions I, 1979, 75, 406.	1.0	34
183	Electron spin resonance study of dipole-coupled copper(II) pairs in Y zeolites. The Journal of Physical Chemistry, 1978, 82, 1575-1578.	2.9	19
184	Election spin resonance of undetected copper(II) ions in Y zeolite. The Journal of Physical Chemistry, 1978, 82, 1847-1850.	2.9	17