Qiurong Ding

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2349814/publications.pdf

Version: 2024-02-01

304743 302126 2,268 39 22 39 h-index citations g-index papers 39 39 39 4799 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Optimized protocols for efficient gene editing in mouse hepatocytes in vivo using CRISPR-Cas9 technology. STAR Protocols, 2022, 3, 101062.	1.2	4
2	Targeting NECTIN-1 Based on CRISPR/Cas9 System Attenuated the Herpes Simplex Virus Infection in Human Corneal Epithelial Cells In Vitro. Translational Vision Science and Technology, 2022, 11, 8.	2.2	4
3	RIP1 kinase activity promotes steatohepatitis through mediating cell death and inflammation in macrophages. Cell Death and Differentiation, 2021, 28, 1418-1433.	11.2	48
4	Hepatic miR-378 modulates serum cholesterol levels by regulating hepatic bile acid synthesis. Theranostics, 2021, 11, 4363-4380.	10.0	6
5	In Situ Saturating Mutagenesis Screening Identifies a Functional Genomic Locus that Regulates ${\sf Ucp1}$ Expression. Phenomics, 2021, 1, 15-21.	2.9	2
6	Optimized protocol for gene editing in adipocytes using CRISPR-Cas9 technology. STAR Protocols, 2021, 2, 100307.	1.2	3
7	Myosin light chain 2 marks differentiating ventricular cardiomyocytes derived from human embryonic stem cells. Pflugers Archiv European Journal of Physiology, 2021, 473, 991-1007.	2.8	14
8	In Vivo AAV-CRISPR/Cas9–Mediated Gene Editing Ameliorates Atherosclerosis in Familial Hypercholesterolemia. Circulation, 2020, 141, 67-79.	1.6	124
9	SeqCor: correct the effect of guide RNA sequences in clustered regularly interspaced short palindromic repeats/Cas9 screening by machine learning algorithm. Journal of Genetics and Genomics, 2020, 47, 672-680.	3.9	6
10	Mitoregulin Controls β-Oxidation in Human and Mouse Adipocytes. Stem Cell Reports, 2020, 14, 590-602.	4.8	31
11	Spotlight on gene therapy in China. Gene Therapy, 2020, 27, 307-308.	4.5	1
12	Glyburide Regulates UCP1 Expression in Adipocytes Independent of KATP Channel Blockade. IScience, 2020, 23, 101446.	4.1	6
13	MRG15 orchestrates rhythmic epigenomic remodelling and controls hepatic lipid metabolism. Nature Metabolism, 2020, 2, 447-460.	11.9	20
14	Genome-scale CRISPR screening for potential targets of ginsenoside compound K. Cell Death and Disease, 2020, 11, 39.	6.3	6
15	Type 2 Diabetes Variants in the SLC16A11 Coding Region Are Not Loss-of-Function Mutations. Cell Reports, 2019, 29, 781-784.	6.4	6
16	Ubiquitination of RIPK1 suppresses programmed cell death by regulating RIPK1 kinase activation during embryogenesis. Nature Communications, 2019, 10, 4158.	12.8	64
17	Gain-of-Function Mutations of SLC16A11 Contribute to the Pathogenesis of Type 2 Diabetes. Cell Reports, 2019, 26, 884-892.e4.	6.4	21
18	Identification of a rhodanine derivative BML-260 as a potent stimulator of UCP1 expression. Theranostics, 2019, 9, 3501-3514.	10.0	11

#	Article	IF	CITATIONS
19	Cullin5 deficiency promotes small-cell lung cancer metastasis by stabilizing integrin \hat{l}^21 . Journal of Clinical Investigation, 2019, 129, 972-987.	8.2	62
20	Cas9-nickase–mediated genome editing corrects hereditary tyrosinemia in rats. Journal of Biological Chemistry, 2018, 293, 6883-6892.	3.4	44
21	Regulatory variants at KLF14 influence type 2 diabetes risk via a female-specific effect on adipocyte size and body composition. Nature Genetics, 2018, 50, 572-580.	21.4	143
22	Genetic Modulation of RNA Splicing with a CRISPR-Guided Cytidine Deaminase. Molecular Cell, 2018, 72, 380-394.e7.	9.7	107
23	Identification of small-molecule ion channel modulators in C. elegans channelopathy models. Nature Communications, 2018, 9, 3941.	12.8	19
24	microRNA-378 promotes autophagy and inhibits apoptosis in skeletal muscle. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E10849-E10858.	7.1	96
25	Screening of FDA-approved drugs identifies sutent as a modulator of UCP1 expression in brown adipose tissue. EBioMedicine, 2018, 37, 344-355.	6.1	29
26	Genetic and Chemical Screenings Identify HDAC3 as a Key Regulator inÂHepatic Differentiation of Human Pluripotent Stem Cells. Stem Cell Reports, 2018, 11, 22-31.	4.8	24
27	Genome engineering of stem cell organoids for disease modeling. Protein and Cell, 2017, 8, 315-327.	11.0	30
28	RIP1 kinase activity-dependent roles in embryonic development of Fadd-deficient mice. Cell Death and Differentiation, 2017, 24, 1459-1469.	11.2	37
29	Deletion of Macrophage Mineralocorticoid Receptor Protects Hepatic Steatosis and Insulin Resistance Through ERI±/HGF/Met Pathway. Diabetes, 2017, 66, 1535-1547.	0.6	36
30	Titanium dioxide nanoparticles prime a specific activation state of macrophages. Nanotoxicology, 2017, 11, 1-14.	3.0	29
31	CRISPR/Cas9 with single guide RNA expression driven by small tRNA promoters showed reduced editing efficiency compared to a U6 promoter. Rna, 2017, 23, 1-5.	3. 5	14
32	Dihydroartemisinin selectively inhibits PDGFRα-positive ovarian cancer growth and metastasis through inducing degradation of PDGFRα protein. Cell Discovery, 2017, 3, 17042.	6.7	44
33	Prevention of Muscle Wasting by CRISPR/Cas9-mediated Disruption of Myostatin In Vivo. Molecular Therapy, 2016, 24, 1889-1891.	8.2	22
34	A Self-restricted CRISPR System to Reduce Off-target Effects. Molecular Therapy, 2016, 24, 1508-1510.	8.2	66
35	Interleukin-6 stimulates aerobic glycolysis by regulating PFKFB3 at early stage of colorectal cancer. International Journal of Oncology, 2016, 48, 215-224.	3.3	41
36	CRISPR-Cas9 Targeting of <i>PCSK9</i> in Human Hepatocytes In Vivoâ€"Brief Report. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 783-786.	2.4	118

QIURONG DING

#	Article	IF	CITATIONS
37	Permanent Alteration of PCSK9 With In Vivo CRISPR-Cas9 Genome Editing. Circulation Research, 2014, 115, 488-492.	4.5	439
38	Enhanced Efficiency of Human Pluripotent Stem Cell Genome Editing through Replacing TALENs with CRISPRs. Cell Stem Cell, 2013, 12, 393-394.	11.1	449
39	Endocytosis of adiponectin receptor 1 through a clathrin- and Rab5-dependent pathway. Cell Research, 2009, 19, 317-327.	12.0	42