Toshiyuki Yamane

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2349704/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Skin antigens in the steady state are trafficked to regional lymph nodes by transforming growth factor-l²1-dependent cells. International Immunology, 2001, 13, 695-704.	4.0	170
2	Insulin-Like Growth Factor Promotes Engraftment, Differentiation, and Functional Improvement after Transfer of Embryonic Stem Cells for Myocardial Restoration. Stem Cells, 2004, 22, 1239-1245.	3.2	130
3	Injectable bioartificial myocardial tissue for large-scale intramural cell transfer and functional recovery of injured heart muscle. Journal of Thoracic and Cardiovascular Surgery, 2004, 128, 571-578.	0.8	127
4	Regulation of osteoclast development by Notch signaling directed to osteoclast precursors and through stromal cells. Blood, 2003, 101, 2227-2234.	1.4	119
5	Derivation of melanocytes from embryonic stem cells in culture. Developmental Dynamics, 1999, 216, 450-458.	1.8	106
6	Bmi-1-Green Fluorescent Protein-Knock-In Mice Reveal the Dynamic Regulation of Bmi-1 Expression in Normal and Leukemic Hematopoietic Cells. Stem Cells, 2007, 25, 1635-1644.	3.2	98
7	Myocardial Restoration With Embryonic Stem Cell Bioartificial Tissue Transplantation. Journal of Heart and Lung Transplantation, 2005, 24, 737-744.	0.6	86
8	Development of Osteoclasts From Embryonic Stem Cells Through a Pathway That Is c-fms but not c-kit Dependent. Blood, 1997, 90, 3516-3523.	1.4	85
9	Stimulation of Paracrine Pathways With Growth Factors Enhances Embryonic Stem Cell Engraftment and Host-Specific Differentiation in the Heart After Ischemic Myocardial Injury. Circulation, 2005, 111, 2486-2493.	1.6	85
10	Wnt Signaling Regulates Hemopoiesis Through Stromal Cells. Journal of Immunology, 2001, 167, 765-772.	0.8	81
11	Origins and Properties of Dental, Thymic, and Bone Marrow Mesenchymal Cells and Their Stem Cells. PLoS ONE, 2012, 7, e46436.	2.5	71
12	Establishment and Characterization of an Immortal Macrophage-like Cell Line Inducible to Differentiate to Osteoclasts. Biochemical and Biophysical Research Communications, 1998, 242, 703-709.	2.1	67
13	Commitment and differentiation of stem cells to the osteoclast lineage. Biochemistry and Cell Biology, 1998, 76, 911-922.	2.0	60
14	Enforced Bcl-2 expression overrides serum and feeder cell requirements for mouse embryonic stem cell self-renewal. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 3312-3317.	7.1	54
15	Distinct Osteoclast Precursors in the Bone Marrow and Extramedullary Organs Characterized by Responsiveness to Toll-Like Receptor Ligands and TNF-α. Journal of Immunology, 2003, 171, 5130-5139.	0.8	53
16	Mouse Yolk Sac Hematopoiesis. Frontiers in Cell and Developmental Biology, 2018, 6, 80.	3.7	51
17	Intramedullary and extramedullary B lymphopoiesis in osteopetrotic mice. Blood, 2000, 95, 3363-3370.	1.4	47

18 Osteoclast precursors in bone marrow and peritoneal cavity. , 1997, 170, 241-247.

45

Τοςηιγυκι Υαμανέ

#	Article	IF	CITATIONS
19	Presence and distribution of neural crest-derived cells in the murine developing thymus and their potential for differentiation. International Immunology, 2005, 17, 549-558.	4.0	40
20	Sequential requirements for SCL/tal-1, GATA-2, macrophage colony-stimulating factor, and osteoclast differentiation factor/osteoprotegerin ligand in osteoclast development. Experimental Hematology, 2000, 28, 833-840.	0.4	34
21	Cooperative and indispensable roles of endothelin 3 and KIT signalings in melanocyte development. Developmental Dynamics, 2005, 233, 407-417.	1.8	32
22	Presence of osteoclast precursors in colonies cloned in the presence of hematopoietic colony-stimulating factors. Experimental Hematology, 2001, 29, 68-76.	0.4	30
23	Expression of AA4.1 marks lymphohematopoietic progenitors in early mouse development. Proceedings of the United States of America, 2009, 106, 8953-8958.	7.1	24
24	Temporal and Spatial Localization of Osteoclasts in Colonies from Embryonic Stem Cells. Biochemical and Biophysical Research Communications, 2001, 280, 526-534.	2.1	17
25	Depletion of Neural Crest–Derived Cells Leads to Reduction in Plasma Noradrenaline and Alters B Lymphopoiesis. Journal of Immunology, 2017, 198, 156-169.	0.8	17
26	Discrete Types of Osteoclast Precursors Can Be Generated from Embryonic Stem Cells. Stem Cells, 2003, 21, 670-680.	3.2	15
27	In Vitro Differentiation of Mouse ES Cells into Hematopoietic, Endothelial, and Osteoblastic Cell Lineages: The Possibility of In Vitro Organogenesis. Methods in Enzymology, 2003, 365, 98-114.	1.0	11
28	Common Developmental Pathway for Primitive Erythrocytes and Multipotent Hematopoietic Progenitors in Early Mouse Development. Stem Cell Reports, 2013, 1, 590-603.	4.8	10
29	Cellular Basis of Embryonic Hematopoiesis and Its Implications in Prenatal Erythropoiesis. International Journal of Molecular Sciences, 2020, 21, 9346.	4.1	9
30	Earliest hematopoietic progenitors at embryonic day 9 preferentially generate B-1 B cells rather than follicular B or marginal zone B cells. Biochemical and Biophysical Research Communications, 2013, 437, 307-313.	2.1	8
31	Embryonic Stem Cells as a Model for Studying Osteoclast Lineage Development. , 2002, 185, 97-106.		6
32	Intramedullary and extramedullary B lymphopoiesis in osteopetrotic mice. Blood, 2000, 95, 3363-3370.	1.4	6
33	Repression of Primitive Erythroid Program Is Critical for the Initiation of Multiâ€Lineage Hematopoiesis in Mouse Development. Journal of Cellular Physiology, 2017, 232, 323-330.	4.1	5
34	Subjectivity of the Anomalous Sense of Self Is Represented in Gray Matter Volume in the Brain. Frontiers in Human Neuroscience, 2017, 11, 232.	2.0	5
35	Derivation of melanocytes from embryonic stem cells in culture. Developmental Dynamics, 1999, 216, 450-458.	1.8	5
36	Development of Melanocytes from ES Cells. Methods in Enzymology, 2003, 365, 341-349.	1.0	4

Τοςηιγυκι Υάμανε

#	Article	IF	CITATIONS
37	Multiple cell populations generate macrophage progenitors in the early yolk sac. Cellular and Molecular Life Sciences, 2022, 79, 159.	5.4	3
38	Methods for Investigation of Osteoclastogenesis Using Mouse Embryonic Stem Cells. Methods in Molecular Biology, 2011, 690, 239-253.	0.9	1
39	Embryonic Stem Cells as a Model for Studying Melanocyte Development. , 2002, 185, 261-268.		0
40	Melanocytes. , 2004, , 233-236.		0
41	Osteoclast Lineage. , 2004, , 295-303.		0
42	Isolation of CD35+ follicular dendritic cells and its role in the differentiation from B cells to IgA+GL7+ cells. Immunology Letters, 2022, , .	2.5	0