Donghong Ning

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2349225/publications.pdf

Version: 2024-02-01

331259 344852 1,476 68 21 citations h-index papers

g-index 70 70 70 864 docs citations times ranked citing authors all docs

36

#	Article	IF	Citations
1	Innovative variable stiffness and variable damping magnetorheological actuation system for robotic arm positioning. Journal of Intelligent Material Systems and Structures, 2023, 34, 123-137.	1.4	8
2	An Electromagnetic Variable Inertance and Damping Seat Suspension With Controllable Circuits. IEEE Transactions on Industrial Electronics, 2022, 69, 2811-2821.	5.2	18
3	Variable Admittance Network with Indirect Energy Supply for Semiactive Vibration Control. Lecture Notes in Electrical Engineering, 2022, , 987-1002.	0.3	O
4	Decoupling vibration control of a semi-active electrically interconnected suspension based on mechanical hardware-in-the-loop. Mechanical Systems and Signal Processing, 2022, 166, 108455.	4.4	16
5	Investigation of a seat suspension installed with compact variable stiffness and damping rotary magnetorheological dampers. Mechanical Systems and Signal Processing, 2022, 171, 108802.	4.4	24
6	A semi-active suspension using a magnetorheological damper with nonlinear negative-stiffness component. Mechanical Systems and Signal Processing, 2021, 147, 107071.	4.4	95
7	Event-triggered <mml:math altimg="si10.svg" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mi>H</mml:mi></mml:mrow><mml:mrow><mr 107210.<="" 149,="" 2021,="" active="" and="" based="" conditions="" control="" for="" mechanical="" on="" processing,="" relaxed="" seat="" signal="" stability.="" suspension="" systems="" td=""><td>ml:mi>â^ž< 4.4</td><td>26</td></mr></mml:mrow></mml:msub></mml:mrow></mml:math>	ml:mi>â^ž< 4.4	26
8	Modelling and experimental evaluation of a variable stiffness MR suspension with self-powering capability. Journal of Intelligent Material Systems and Structures, 2021, 32, 1473-1483.	1.4	2
9	A smart passive MR damper with a hybrid powering system for impact mitigation: An experimental study. Journal of Intelligent Material Systems and Structures, 2021, 32, 1452-1461.	1.4	5
10	Friction observer-based hybrid controller for a seat suspension with semi-active electromagnetic damper. Mechatronics, 2021, 76, 102568.	2.0	7
11	A novel magneto-rheological fluid dual-clutch design for two-speed transmission of electric vehicles. Smart Materials and Structures, 2021, 30, 075035.	1.8	5
12	Event-triggered $\langle i\rangle H\langle i\rangle\langle sub\rangle \hat{a}^*\dot{z}\langle sub\rangle$ control for active seat suspension systems with state delay. Transactions of the Institute of Measurement and Control, 2021, 43, 3428-3437.	1.1	1
13	A semi-active variable equivalent stiffness and inertance device implemented by an electrical network. Mechanical Systems and Signal Processing, 2021, 156, 107676.	4.4	21
14	Output Reachable Set Estimation for Singular Seat Suspension Systems. , 2021, , 143-149.		0
15	Dynamic outputâ€feedback eventâ€triggered Hâ^ž control for singular active seat suspension systems with a human body model. IET Control Theory and Applications, 2021, 15, 594-603.	1.2	11
16	Optimization of electrically interconnected suspension for vibration control., 2021,,.		3
17	An Electromagnetic Variable Stiffness Device for Semiactive Seat Suspension Vibration Control. IEEE Transactions on Industrial Electronics, 2020, 67, 6773-6784.	5.2	29
18	A magnetorheological elastomer rail damper for wideband attenuation of rail noise and vibration. Journal of Intelligent Material Systems and Structures, 2020, 31, 220-228.	1.4	16

#	Article	IF	CITATIONS
19	Development of a smart rubber joint for train using shear thickening fluids. Smart Materials and Structures, 2020, 29, 055036.	1.8	6
20	The variable resonance magnetorheological pendulum tuned mass damper: Mathematical modelling and seismic experimental studies. Journal of Intelligent Material Systems and Structures, 2020, 31, 263-276.	1.4	10
21	Semi-actively Controllable Vehicle Seat Suspension System with Negative Stiffness Magnetic Spring. IEEE/ASME Transactions on Mechatronics, 2020, , 1-1.	3.7	2
22	Takagi-Sugeno Fuzzy Model-Based Semi-Active Control for the Seat Suspension With an Electrorheological Damper. IEEE Access, 2020, 8, 98027-98037.	2.6	12
23	Self-powered MR seat suspension. , 2020, , 57-77.		0
24	Variable equivalent inertance seat suspension. , 2020, , 121-167.		O
25	Single-DOF active seat suspension. , 2020, , 171-179.		O
26	Multiple-DOF active seat suspension. , 2020, , 181-208.		0
27	Vibration control of a negative stiffness mechanism-based semiactive seat suspension system. , 2020, , 275-293.		O
28	Theoretical and experimental investigation of a stiffness-controllable suspension for railway vehicles to avoid resonance. International Journal of Mechanical Sciences, 2020, 187, 105901.	3.6	23
29	Variable equivalent stiffness seat suspension. , 2020, , 79-119.		O
30	Active seat suspension control algorithm. , 2020, , 209-242.		1
31	Hybrid active and semi-active seat suspension. , 2020, , 245-265.		O
32	Controllable Electrically Interconnected Suspension System for Improving Vehicle Vibration Performance. IEEE/ASME Transactions on Mechatronics, 2020, 25, 859-871.	3.7	30
33	A Takagi-Sugeno Fuzzy Model-Based Control Strategy for Variable Stiffness and Variable Damping Suspension. IEEE Access, 2020, 8, 71628-71641.	2.6	8
34	Integration of an omnidirectional self-powering component to an MRE isolator towards a smart passive isolation system. Mechanical Systems and Signal Processing, 2020, 144, 106853.	4.4	13
35	A novel negative stiffness magnetic spring design for vehicle seat suspension system. Mechatronics, 2020, 68, 102370.	2.0	27
36	A controllable mechanical motion rectifier-based semi-active magnetorheological inerter for vibration control. Smart Materials and Structures, 2020, 29, 114005.	1.8	13

#	Article	IF	CITATIONS
37	Singular System-Based Approach for Active Vibration Control of Vehicle Seat Suspension. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, 2020, 142, .	0.9	5
38	A variable resonance magnetorheological-fluid-based pendulum tuned mass damper for seismic vibration suppression. Mechanical Systems and Signal Processing, 2019, 116, 530-544.	4.4	60
39	Torque response characteristics of a controllable electromagnetic damper for seat suspension vibration control. Mechanical Systems and Signal Processing, 2019, 133, 106238.	4.4	12
40	Design and testing of a novel two-way controllable overrunning clutch based magneto-rheological brake. Smart Materials and Structures, 2019, 28, 095013.	1.8	4
41	An electromagnetic variable inertance device for seat suspension vibration control. Mechanical Systems and Signal Processing, 2019, 133, 106259.	4.4	49
42	Development and evaluation of a highly adaptive MRF-based absorber with a large effective frequency range. Smart Materials and Structures, 2019, 28, 105003.	1.8	10
43	A Novel Electrical Variable Stiffness Device for Vehicle Seat Suspension Control With Mismatched Disturbance Compensation. IEEE/ASME Transactions on Mechatronics, 2019, 24, 2019-2030.	3.7	23
44	A rotary variable admittance device and its application in vehicle seat suspension vibration control. Journal of the Franklin Institute, 2019, 356, 7873-7895.	1.9	28
45	Experimental testing and modelling of a rotary variable stiffness and damping shock absorber using magnetorheological technology. Journal of Intelligent Material Systems and Structures, 2019, 30, 1453-1465.	1.4	23
46	A highly stiffness-adjustable robot leg for enhancing locomotive performance. Mechanical Systems and Signal Processing, 2019, 126, 458-468.	4.4	25
47	A variable inertance and variable damping vibration control system with electric circuit. , 2019, , .		4
48	Takagi-Sugeno Fuzzy Control for the Semi-active Seat Suspension with an Electromagnetic Damper. , 2019, , .		0
49	Robust Adaptive Sliding Mode Pl Control for Active Vehicle Seat Suspension Systems. , 2019, , .		5
50	A New Generation of Magnetorheological Vehicle Suspension System With Tunable Stiffness and Damping Characteristics. IEEE Transactions on Industrial Informatics, 2019, 15, 4696-4708.	7.2	47
51	Vibration control of an energy regenerative seat suspension with variable external resistance. Mechanical Systems and Signal Processing, 2018, 106, 94-113.	4.4	62
52	An Energy Saving Variable Damping Seat Suspension System With Regeneration Capability. IEEE Transactions on Industrial Electronics, 2018, 65, 8080-8091.	5.2	63
53	Integrated active and semi-active control for seat suspension of a heavy duty vehicle. Journal of Intelligent Material Systems and Structures, 2018, 29, 91-100.	1.4	24
54	An Innovative Two-Layer Multiple-DOF Seat Suspension for Vehicle Whole Body Vibration Control. IEEE/ASME Transactions on Mechatronics, 2018, 23, 1787-1799.	3.7	16

#	Article	IF	CITATIONS
55	Control of a multiple-DOF vehicle seat suspension with roll and vertical vibration. Journal of Sound and Vibration, 2018, 435, 170-191.	2.1	34
56	Development and evaluation of an MRE-based absorber with two individually controllable natural frequencies. Smart Materials and Structures, 2018, 27, 095002.	1.8	10
57	Disturbance observer based Takagi-Sugeno fuzzy control for an active seat suspension. Mechanical Systems and Signal Processing, 2017, 93, 515-530.	4.4	94
58	Vibration reduction of seat suspension using observer based terminal sliding mode control with acceleration data fusion. Mechatronics, 2017, 44, 71-83.	2.0	42
59	Development of an MR seat suspension with self-powered generation capability. Smart Materials and Structures, 2017, 26, 085025.	1.8	25
60	A torsional MRE joint for a C-shaped robotic leg. Smart Materials and Structures, 2017, 26, 015002.	1.8	22
61	Takagi–Sugeno Fuzzy Control for Semi-Active Vehicle Suspension With a Magnetorheological Damper and Experimental Validation. IEEE/ASME Transactions on Mechatronics, 2017, 22, 291-300.	3.7	107
62	Relaxed fuzzy observerâ€based output feedback control synthesis of discreteâ€time nonlinear control systems. Complexity, 2016, 21, 593-601.	0.9	7
63	Active control of an innovative seat suspension system with acceleration measurement based friction estimation. Journal of Sound and Vibration, 2016, 384, 28-44.	2.1	81
64	A seat suspension with a rotary magnetorheological damper for heavy duty vehicles. Smart Materials and Structures, 2016, 25, 105032.	1.8	83
65	An active seat suspension design for vibration control of heavy-duty vehicles. Journal of Low Frequency Noise Vibration and Active Control, 2016, 35, 264-278.	1.3	75
66	Experimental Vibration Simulation for Heavy Duty Vehicle Seat Suspension with a Multiple-DOF Motion Platform. , $2015, , .$		0
67	Nonlinear Force Model of Electromagnetic Damper and Its Influence on Vibration Control., 0,,.		1
68	Front vehicle detection based on improved fusion method for lidar and visual image. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 0, , 095440702110685.	1.1	0