List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2348658/publications.pdf Version: 2024-02-01

		136950	149698
107	3,936	32	56
papers	citations	h-index	g-index
112	112	112	4299
all docs	docs citations	times ranked	citing authors

ΥΠΑΝ ΟΙΝ

#	Article	IF	CITATIONS
1	The pineapple genome and the evolution of CAM photosynthesis. Nature Genetics, 2015, 47, 1435-1442.	21.4	472
2	Penetration of the Stigma and Style Elicits a Novel Transcriptome in Pollen Tubes, Pointing to Genes Critical for Growth in a Pistil. PLoS Genetics, 2009, 5, e1000621.	3.5	319
3	The water lily genome and the early evolution of flowering plants. Nature, 2020, 577, 79-84.	27.8	238
4	The WRKY Transcription Factor Family in Model Plants and Crops. Critical Reviews in Plant Sciences, 2017, 36, 311-335.	5.7	231
5	Rapid tip growth: Insights from pollen tubes. Seminars in Cell and Developmental Biology, 2011, 22, 816-824.	5.0	125
6	A role for LORELEI, a putative glycosylphosphatidylinositol-anchored protein, in Arabidopsis thaliana double fertilization and early seed development. Plant Journal, 2010, 62, 571-588.	5.7	104
7	H2A.Z Represses Gene Expression by Modulating Promoter Nucleosome Structure and Enhancer Histone Modifications in Arabidopsis. Molecular Plant, 2017, 10, 1274-1292.	8.3	102
8	Physiological and proteome analysis suggest critical roles for the photosynthetic system for high water-use efficiency under drought stress in Malus. Plant Science, 2015, 236, 44-60.	3.6	77
9	Regulation of Plant Growth and Development: A Review From a Chromatin Remodeling Perspective. Frontiers in Plant Science, 2018, 9, 1232.	3.6	77
10	Evolutionary and expression analyses of soybean basic Leucine zipper transcription factor family. BMC Genomics, 2018, 19, 159.	2.8	75
11	Genomes of the Banyan Tree and Pollinator Wasp Provide Insights into Fig-Wasp Coevolution. Cell, 2020, 183, 875-889.e17.	28.9	71
12	The THO Complex Non-Cell-Autonomously Represses Female Germline Specification through the TAS3-ARF3 Module. Current Biology, 2017, 27, 1597-1609.e2.	3.9	69
13	ACTIN-RELATED PROTEIN6 Regulates Female Meiosis by Modulating Meiotic Gene Expression in <i>Arabidopsis</i> . Plant Cell, 2014, 26, 1612-1628.	6.6	68
14	Epigenetic regulation of anthocyanin biosynthesis by an antagonistic interaction between H2A.Z and H3K4me3. New Phytologist, 2019, 221, 295-308.	7.3	68
15	ERECTA signaling controls <i>Arabidopsis</i> inflorescence architecture through chromatinâ€mediated activation of <i><scp>PRE</scp>1</i> expression. New Phytologist, 2017, 214, 1579-1596.	7.3	67
16	Assembly and comparative analysis of the complete mitochondrial genome of Suaeda glauca. BMC Genomics, 2021, 22, 167.	2.8	67
17	<i>KLU</i> suppresses megasporocyte cell fate through SWR1-mediated activation of <i>WRKY28</i> expression in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E526-E535.	7.1	66
18	The bracteatus pineapple genome and domestication of clonally propagated crops. Nature Genetics, 2019, 51, 1549-1558.	21.4	60

#	Article	IF	CITATIONS
19	Genome-Wide Identification and Expression Profiling of CBL-CIPK Gene Family in Pineapple (Ananas) Tj ETQq1	1 0.784314 4.0	rgBT /Overlo
20	Aux/IAA14 Regulates microRNA-Mediated Cold Stress Response in Arabidopsis Roots. International Journal of Molecular Sciences, 2020, 21, 8441.	4.1	57
21	Genome-Wide Identification and Expression Profiling of ATP-Binding Cassette (ABC) Transporter Gene Family in Pineapple (Ananas comosus (L.) Merr.) Reveal the Role of AcABCG38 in Pollen Development. Frontiers in Plant Science, 2017, 8, 2150.	3.6	56
22	Plant Low-Temperature Stress: Signaling and Response. Agronomy, 2022, 12, 702.	3.0	55
23	Genome-wide identification and expression profiling of the SnRK2 gene family in Malus prunifolia. Gene, 2014, 552, 87-97.	2.2	51
24	The REN4 rheostat dynamically coordinates the apical and lateral domains of Arabidopsis pollen tubes. Nature Communications, 2018, 9, 2573.	12.8	50
25	Membrane receptor-mediated mechano-transduction maintains cell integrity during pollen tube growth within the pistil. Developmental Cell, 2021, 56, 1030-1042.e6.	7.0	46
26	The bZIP Transcription Factor GmbZIP15 Negatively Regulates Salt- and Drought-Stress Responses in Soybean. International Journal of Molecular Sciences, 2020, 21, 7778.	4.1	45
27	Simple protoplast isolation system for gene expression and protein interaction studies in pineapple (Ananas comosus L.). Plant Methods, 2018, 14, 95.	4.3	44
28	Genome-Wide Identification of Auxin Response Factor (ARF) Genes Family and its Tissue-Specific Prominent Expression in Pineapple (Ananas comosus). Tropical Plant Biology, 2017, 10, 86-96.	1.9	42
29	Arabidopsis ICK/KRP cyclin-dependent kinase inhibitors function to ensure the formation of one megaspore mother cell and one functional megaspore per ovule. PLoS Genetics, 2018, 14, e1007230.	3.5	41
30	Comparative expression profiling reveals gene functions in female meiosis and gametophyte development in Arabidopsis. Plant Journal, 2014, 80, 615-628.	5.7	40
31	Regulation of Female Germline Specification via Small RNA Mobility in Arabidopsis. Plant Cell, 2020, 32, 2842-2854.	6.6	40
32	Pollen Tube Discharge Completes the Process of Synergid Degeneration That Is Initiated by Pollen Tube-Synergid Interaction in Arabidopsis. Plant Physiology, 2015, 169, 485-496.	4.8	39
33	SWR1 Chromatin Remodeling Complex: A Key Transcriptional Regulator in Plants. Cells, 2019, 8, 1621.	4.1	36
34	Genome-Wide Analysis of the YABBY Transcription Factor Family in Pineapple and Functional Identification of AcYABBY4 Involvement in Salt Stress. International Journal of Molecular Sciences, 2019, 20, 5863.	4.1	36
35	Floral transcriptomes reveal gene networks in pineapple floral growth and fruit development. Communications Biology, 2020, 3, 500.	4.4	34
36	Sulfinylated azadecalins act as functional mimics of a pollen germination stimulant in Arabidopsis pistils. Plant Journal, 2011, 68, 800-815.	5.7	29

#	Article	IF	CITATIONS
37	Differential Expression Analysis of Reference Genes in Pineapple (Ananas comosus L.) during Reproductive Development and Response to Abiotic Stress, Hormonal Stimuli. Tropical Plant Biology, 2019, 12, 67-77.	1.9	29
38	Overexpression of MpGR-RBP1, a glycine-rich RNA-binding protein gene from Malus prunifolia (Willd.) Borkh., confers salt stress tolerance and protects against oxidative stress in Arabidopsis. Plant Cell, Tissue and Organ Culture, 2014, 119, 635-646.	2.3	28
39	ROS and Oxidative Response Systems in Plants Under Biotic and Abiotic Stresses: Revisiting the Crucial Role of Phosphite Triggered Plants Defense Response. Frontiers in Microbiology, 2021, 12, 631318.	3.5	28
40	AcoMYB4, an Ananas comosus L. MYB Transcription Factor, Functions in Osmotic Stress through Negative Regulation of ABA Signaling. International Journal of Molecular Sciences, 2020, 21, 5727.	4.1	27
41	ATP binding cassette transporters ABCG1 and ABCG16 affect reproductive development via auxin signalling in Arabidopsis. Plant Journal, 2020, 102, 1172-1186.	5.7	25
42	Genome-wide study of pineapple (Ananas comosus L.) bHLH transcription factors indicates that cryptochrome-interacting bHLH2 (AcCIB2) participates in flowering time regulation and abiotic stress response. BMC Genomics, 2020, 21, 735.	2.8	24
43	Identification, Characterization and Expression Profiles of Dof Transcription Factors in Pineapple (Ananas comosus L). Tropical Plant Biology, 2018, 11, 49-64.	1.9	22
44	Genome-wide investigation of calcium-dependent protein kinase gene family in pineapple: evolution and expression profiles during development and stress. BMC Genomics, 2020, 21, 72.	2.8	22
45	Auxin Signaling-Mediated Apoplastic pH Modification Functions in Petal Conical Cell Shaping. Cell Reports, 2020, 30, 3904-3916.e3.	6.4	21
46	A Soybean bZIP Transcription Factor GmbZIP19 Confers Multiple Biotic and Abiotic Stress Responses in Plant. International Journal of Molecular Sciences, 2020, 21, 4701.	4.1	21
47	Identification and expression analysis of the DREB transcription factor family in pineapple (<i>Ananas) Tj ETQq1</i>	1 0,78431 2.0	4 rgBT /Over
48	Comparative analyses of American and Asian lotus genomes reveal insights into petal color, carpel thermogenesis and domestication. Plant Journal, 2022, 110, 1498-1515.	5.7	21
49	ERECTA signaling regulates plant immune responses via chromatinâ€mediated promotion of <i>WRKY33</i> binding to target genes. New Phytologist, 2021, 230, 737-756.	7.3	20
50	Focusing on the Focus: What Else beyond the Master Switches for Polar Cell Growth?. Molecular Plant, 2015, 8, 582-594.	8.3	18
51	High-throughput single-cell transcriptomics reveals the female germline differentiation trajectory in Arabidopsis thaliana. Communications Biology, 2021, 4, 1149.	4.4	18
52	Identification and characterization of pineapple leaf IncRNAs in crassulacean acid metabolism (CAM) photosynthesis pathway. Scientific Reports, 2019, 9, 6658.	3.3	17
53	HBI1 acts downstream of ERECTA and SWR1 in regulating inflorescence architecture through the activation of the brassinosteroid and auxin signaling pathways. New Phytologist, 2021, 229, 414-428.	7.3	17
54	Spatiotemporal control of miR398 biogenesis, via chromatin remodeling and kinase signaling, ensures proper ovule development. Plant Cell, 2021, 33, 1530-1553.	6.6	16

#	Article	IF	CITATIONS
55	Brassinosteroid signaling regulates female germline specification in Arabidopsis. Current Biology, 2022, 32, 1102-1114.e5.	3.9	16
56	An Efficient Agrobacterium Mediated Transformation of Pineapple with GFP-Tagged Protein Allows Easy, Non-Destructive Screening of Transgenic Pineapple Plants. Biomolecules, 2019, 9, 617.	4.0	15
57	AcCIPK5, a pineapple CBL-interacting protein kinase, confers salt, osmotic and cold stress tolerance in transgenic Arabidopsis. Plant Science, 2022, 320, 111284.	3.6	15
58	Genome-Wide Identification and Expression Analysis of LBD Transcription Factor Genes in Passion Fruit (Passiflora edulis). International Journal of Molecular Sciences, 2022, 23, 4700.	4.1	15
59	Expression Profiles of Wuschel-Related Homeobox Gene Family in Pineapple (Ananas comosus L). Tropical Plant Biology, 2017, 10, 204-215.	1.9	14
60	Comparative Expression Profiling Reveals Genes Involved in Megasporogenesis. Plant Physiology, 2020, 182, 2006-2024.	4.8	14
61	Genome-Wide Classification and Evolutionary and Functional Analyses of the VQ Family. Tropical Plant Biology, 2019, 12, 117-131.	1.9	13
62	The pineapple MADS-box gene family and the evolution of early monocot flower. Scientific Reports, 2021, 11, 849.	3.3	13
63	Characterization and the Expression Analysis of Nitrate Transporter (NRT) Gene Family in Pineapple. Tropical Plant Biology, 2018, 11, 177-191.	1.9	12
64	Arabidopsis IPGA1 is a microtubule-associated protein essential for cell expansion during petal morphogenesis. Journal of Experimental Botany, 2019, 70, 5231-5243.	4.8	12
65	Integrated analysis of DNA methylome and transcriptome reveals epigenetic regulation of CAM photosynthesis in pineapple. BMC Plant Biology, 2021, 21, 19.	3.6	12
66	Genomic Survey, Characterization, and Expression Profile Analysis of the SBP Genes in Pineapple (Ananas comosus L.). International Journal of Genomics, 2017, 2017, 1-14.	1.6	11
67	Identification of SWI2/SNF2-Related 1 Chromatin Remodeling Complex (SWR1-C) Subunits in Pineapple and the Role of Pineapple SWR1 COMPLEX 6 (AcSWC6) in Biotic and Abiotic Stress Response. Biomolecules, 2019, 9, 364.	4.0	11
68	Low Mannitol Concentrations in Arabidopsis thaliana Expressing Ectocarpus Genes Improve Salt Tolerance. Plants, 2020, 9, 1508.	3.5	10
69	Genome-Wide Analysis, Characterization, and Expression Profile of the Basic Leucine Zipper Transcription Factor Family in Pineapple. International Journal of Genomics, 2020, 2020, 1-14.	1.6	10
70	Genome-wide identification, classification, and expression analysis of the <i>HSF</i> gene family in pineapple (<i>Ananas comosus</i>). PeerJ, 2021, 9, e11329.	2.0	10
71	The bZIP transcription factor GmbZIP15 facilitates resistance against Sclerotinia sclerotiorum and Phytophthora sojae infection in soybean. IScience, 2021, 24, 102642.	4.1	10
72	Characterization of auxin transporter <i>AUX</i> , <i>PIN</i> and <i>PILS</i> gene families in pineapple and evaluation of expression profiles during reproductive development and under abiotic stresses. PeerJ, 2021, 9, e11410.	2.0	10

#	Article	IF	CITATIONS
73	Genome-wide identification and expression analysis of the ERF transcription factor family in pineapple (<i>Ananas comosus</i> (L.) Merr.). PeerJ, 2020, 8, e10014.	2.0	10
74	A CBL-interacting protein kinase, AcCIPK18, from Ananas comosus regulates tolerance to salt, drought, heat stress and Sclerotinia sclerotiorum infection in Arabidopsis. Environmental and Experimental Botany, 2022, 194, 104728.	4.2	10
75	Genome-Wide Identification, Expression Pattern Analysis and Evolution of the Ces/Csl Gene Superfamily in Pineapple (Ananas comosus). Plants, 2019, 8, 275.	3.5	9
76	SDG2 regulates Arabidopsis inflorescence architecture through SWR1-ERECTA signaling pathway. IScience, 2021, 24, 103236.	4.1	9
77	Studies on genome size estimation, chromosome number, gametophyte development and plant morphology of salt-tolerant halophyte Suaeda salsa. BMC Plant Biology, 2019, 19, 473.	3.6	8
78	Enhancement of in vitro shoot regeneration from leaf explants of apple rootstock G.41. In Vitro Cellular and Developmental Biology - Plant, 2014, 50, 263-270.	2.1	7
79	Ectopic Expression of Cold Responsive LlaCIPK Gene Enhances Cold Stress Tolerance in Nicotiana tabacum. Genes, 2019, 10, 446.	2.4	7
80	Genome-Wide Identification and Expression Analysis of the NAC Transcription Factor Family in Pineapple. Tropical Plant Biology, 2019, 12, 255-267.	1.9	7
81	Expression characterization and cross-species complementation uncover the functional conservation of YABBY genes for leaf abaxial polarity and carpel polarity establishment in Saccharum spontaneum. BMC Plant Biology, 2022, 22, 124.	3.6	7
82	Genome-Wide Analysis of the Cryptochrome Gene Family in Plants. Tropical Plant Biology, 2020, 13, 117-126.	1.9	6
83	Identification and Evolutionary Analysis of FAD2 Gene Family in Green Plants. Tropical Plant Biology, 0, , 1.	1.9	6
84	Genome-Wide Investigation of SBT Family Genes in Pineapple and Functional Analysis of AcoSBT1.12 in Floral Transition. Frontiers in Genetics, 2021, 12, 730821.	2.3	6
85	Genomic analysis of SBP gene family in Saccharum spontaneum reveals their association with vegetative and reproductive development. BMC Genomics, 2021, 22, 767.	2.8	5
86	The Glycine-Rich Domain Protein GRDP2 Regulates Ovule Development via the Auxin Pathway in Arabidopsis. Frontiers in Plant Science, 2021, 12, 698487.	3.6	5
87	Characterization of germline development and identification of genes associated with germline specification in pineapple. Horticulture Research, 2021, 8, 239.	6.3	5
88	The Inactivation of Arabidopsis UBC22 Results in Abnormal Chromosome Segregation in Female Meiosis, but Not in Male Meiosis. Plants, 2021, 10, 2418.	3.5	5
89	Big Role of Small RNAs in Female Gametophyte Development. International Journal of Molecular Sciences, 2022, 23, 1979.	4.1	5
90	Investigation of the JASMONATE ZIM-DOMAIN Gene Family Reveals the Canonical JA-Signaling Pathway in Pineapple. Biology, 2022, 11, 445.	2.8	5

#	Article	IF	CITATIONS
91	Biology of theÂPineapple Plant. Plant Genetics and Genomics: Crops and Models, 2018, , 27-40.	0.3	4
92	Genome-Wide Identification and Evaluation of New Reference Genes in Pineapple (Ananas comosus L.) during Stamen and Ovule Development. Tropical Plant Biology, 2020, 13, 371-381.	1.9	4
93	Genome-wide Identification and Expression Pattern Analysis of the HD-Zip Transcription Factor Family in Pineapple (Ananas Comosus). Tropical Plant Biology, 2021, 14, 120-131.	1.9	4
94	Interspecific complementation-restoration of phenotype in Arabidopsis cuc2cuc3 mutant by sugarcane CUC2 gene. BMC Plant Biology, 2022, 22, 47.	3.6	4
95	Genome Wide Identification and Expression Profiles of TALE Genes in Pineapple (Ananas comosus L). Tropical Plant Biology, 2019, 12, 304-317.	1.9	3
96	TRM61 is essential for Arabidopsis embryo and endosperm development. Plant Reproduction, 2022, 35, 31-46.	2.2	3
97	De novo transcriptome assembly and gene expression profiling of Ipomoea pes-caprae L. under heat and cold stresses. Scientia Horticulturae, 2021, 289, 110379.	3.6	3
98	Ectopic Expression of Kenaf (Hibiscus cannabinus L.) HcWRKY50 Improves Plants' Tolerance to Drought Stress and Regulates ABA Signaling in Arabidopsis. Agronomy, 2022, 12, 1176.	3.0	3
99	Influence of thermal ageing on oxidation performance and nanostructures of dry soot in diesel engine. Journal of Central South University, 2021, 28, 2206-2220.	3.0	2
100	Comparative Expression Profiling of Snf2 Family Genes During Reproductive Development and Stress Responses in Rice. Frontiers in Plant Science, 2022, 13, .	3.6	2
101	Ectopic Overexpression of Pineapple Transcription Factor AcWRKY31 Reduces Drought and Salt Tolerance in Rice and Arabidopsis. International Journal of Molecular Sciences, 2022, 23, 6269.	4.1	2
102	Genome-Wide Identification, Characterization of RDR Genes and their Expression Analysis during Reproductive Development and Stress in Pineapple. Tropical Plant Biology, 2020, 13, 13-22.	1.9	1
103	Identification and evaluation of the novel genes for transcript normalization during female gametophyte development in sugarcane. PeerJ, 2021, 9, e12298.	2.0	1
104	Towards Understanding the Involvement of H+-ATPase in Programmed Cell Death of Psammosilene tunicoides after Oxalic Acid Application. Molecules, 2021, 26, 6957.	3.8	1
105	Somatic Embryogenesis and Indirect In Vitro Plant Regeneration in Amorphophallus konjac K. Koch by One-Step Seedling Formation. Horticulturae, 2021, 7, 497.	2.8	1
106	OsDDM1b Controls Grain Size by Influencing Cell Cycling and Regulating Homeostasis and Signaling of Brassinosteroid in Rice. Frontiers in Plant Science, 2022, 13, 873993.	3.6	1
107	ACTINâ€RELATED PROTEIN 6 regulates DISRUPTED MEIOTIC cDNA 1 gene expression in <i>Arabidopsis thaliana</i> ovules. Molecular Reproduction and Development, 2015, 82, 499-499.	2.0	0