
Li-Da Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2348643/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Intrahepatic cholangiocarcinoma and hepatocellular carcinoma: differential diagnosis with contrast-enhanced ultrasound. European Radiology, 2010, 20, 743-753.	4.5	157
2	Differential diagnosis between benign and malignant gallbladder diseases with real-time contrast-enhanced ultrasound. European Radiology, 2010, 20, 239-248.	4.5	108
3	Multiparametric ultrasomics of significant liver fibrosis: A machine learning-based analysis. European Radiology, 2019, 29, 1496-1506.	4.5	90
4	Contrast-Enhanced Ultrasound for the Characterization of Hepatocellular Carcinoma and Intrahepatic Cholangiocarcinoma. Liver Cancer, 2015, 4, 241-252.	7.7	76
5	Contrast-enhanced ultrasound features of histologically proven focal nodular hyperplasia: diagnostic performance compared with contrast-enhanced CT. European Radiology, 2013, 23, 2546-2554.	4.5	46
6	Multiparametric radiomics improve prediction of lymph node metastasis of rectal cancer compared with conventional radiomics. Life Sciences, 2018, 208, 55-63.	4.3	46
7	CT-based radiomics scores predict response to neoadjuvant chemotherapy and survival in patients with gastric cancer. BMC Cancer, 2020, 20, 468.	2.6	40
8	Differentiation of Atypical Hepatocellular Carcinoma from Focal Nodular Hyperplasia: Diagnostic Performance of Contrast-enhanced US and Microflow Imaging. Radiology, 2015, 275, 870-879.	7.3	37
9	Preoperative prediction of tumour deposits in rectal cancer by an artificial neural network–based US radiomics model. European Radiology, 2020, 30, 1969-1979.	4.5	35
10	Comparison between M-score and LR-M in the reporting system of contrast-enhanced ultrasound LI-RADS. European Radiology, 2019, 29, 4249-4257.	4.5	33
11	Artificial intelligence assists identifying malignant <i>versus</i> benign liver lesions using contrastâ€enhanced ultrasound. Journal of Gastroenterology and Hepatology (Australia), 2021, 36, 2875-2883.	2.8	30
12	Differentiation of intrahepatic cholangiocarcinoma from hepatocellular carcinoma in high-risk patients: A predictive model using contrast-enhanced ultrasound. World Journal of Gastroenterology, 2018, 24, 3786-3798.	3.3	30
13	Hepatocellular adenoma: comparison between real-time contrast-enhanced ultrasound and dynamic computed tomography. SpringerPlus, 2016, 5, 951.	1.2	20
14	Assessment of Rectal Tumors with Shear-Wave Elastography before Surgery: Comparison with Endorectal US. Radiology, 2017, 285, 279-292.	7.3	19
15	Using new criteria to improve the differentiation between HCC and non-HCC malignancies: clinical practice and discussion in CEUS LI-RADS 2017. Radiologia Medica, 2022, 127, 1-10.	7.7	19
16	Diagnostic nomogram for gallbladder wall thickening mimicking malignancy: using contrast-enhanced ultrasonography or multi-detector computed tomography?. Abdominal Radiology, 2017, 42, 2436-2446.	2.1	18
17	Machine Learning-Based Ultrasomics Improves the Diagnostic Performance in Differentiating Focal Nodular Hyperplasia and Atypical Hepatocellular Carcinoma. Frontiers in Oncology, 2021, 11, 544979.	2.8	16
18	Do hepatocellular carcinomas located in subcapsular space or in proximity to vessels increase the rate of local tumor progression? A meta-analysis. Life Sciences, 2018, 207, 381-385.	4.3	13

LI-DA CHEN

#	Article	IF	CITATIONS
19	Inter-reader agreement of CEUS LI-RADS among radiologists with different levels of experience. European Radiology, 2021, 31, 6758-6767.	4.5	13
20	Potential diagnostic performance of contrast-enhanced ultrasound and tumor markers in differentiating combined hepatocellular–cholangiocarcinoma from hepatocellular carcinoma and cholangiocarcinoma. Journal of Medical Ultrasonics (2001), 2018, 45, 231-241.	1.3	12
21	Differential diagnosis between hepatic alveolar echinococcosis and intrahepatic cholangiocarcinoma with conventional ultrasound and contrast-enhanced ultrasound. BMC Medical Imaging, 2020, 20, 101.	2.7	12
22	Preoperative Survival Prediction in Intrahepatic Cholangiocarcinoma Using an Ultrasound <scp>â€Based Radiographicâ€Radiomics</scp> Signature. Journal of Ultrasound in Medicine, 2022, 41, 1483-1495.	1.7	12
23	Shear wave elastography-based ultrasomics: differentiating malignant from benign focal liver lesions. Abdominal Radiology, 2021, 46, 237-248.	2.1	11
24	<scp>Contrastâ€Enhanced</scp> Ultrasound for Differentiation Between Poorly Differentiated Hepatocellular Carcinoma and Intrahepatic Cholangiocarcinoma. Journal of Ultrasound in Medicine, 2022, 41, 1213-1225.	1.7	11
25	Differentiation between combined hepatocellular cholangiocarcinoma and hepatocellular carcinoma: comparison of diagnostic performance between ultrasomics-based model and CEUS LI-RADS v2017. BMC Medical Imaging, 2022, 22, 36.	2.7	10
26	Reproducibility of radiomics features from ultrasound images: influence of image acquisition and processing. European Radiology, 2022, 32, 5843-5851.	4.5	10
27	The role of quantitation of real-time 3-dimensional contrast-enhanced ultrasound in detecting microvascular invasion: an in vivo study. Abdominal Radiology, 2016, 41, 1973-1979.	2.1	8
28	LR-M Observations on Contrast-Enhanced Ultrasound: Detection of Hepatocellular Carcinoma Using Additional Features in Comparison With Current LI-RADS Criteria. American Journal of Roentgenology, 2022, 219, 76-85.	2.2	8
29	Focal Lesions in Fatty Liver: If Quantitative Analysis Facilitates the Differentiation of Atypical Benign from Malignant Lesions. Scientific Reports, 2016, 6, 18640.	3.3	7
30	An assessment of liver lesions using a combination of CEUS LI-RADS and AFP. Abdominal Radiology, 2022, 47, 1311-1320.	2.1	7
31	Prediction of lymph node metastasis in rectal cancer: comparison between shear-wave elastography based ultrasomics and MRI. Diagnostic and Interventional Radiology, 2021, 27, 424-431.	1.5	6
32	Value of flaccid penile ultrasound in screening for arteriogenic impotence: a preliminary prospective study. BMC Medical Imaging, 2018, 18, 40.	2.7	4
33	Tumor size-based validation of contrast-enhanced ultrasound liver imaging reporting and data system (CEUS LI-RADS) 2017 for hepatocellular carcinoma characterizing. British Journal of Radiology, 2021, 94, 20201359.	2.2	4
34	Contrast-enhanced ultrasound–based ultrasomics score: a potential biomarker for predicting early recurrence of hepatocellular carcinoma after resection or ablation. British Journal of Radiology, 2022, 95, 20210748.	2.2	4
35	Assessment of angiogenesis in rabbit orthotropic liver tumors using three-dimensional dynamic contrast-enhanced ultrasound compared with two-dimensional DCE-US. Japanese Journal of Radiology, 2019, 37, 701-709.	2.4	3
36	RGB Three-Channel SWE-Based Ultrasomics Model: Improving the Efficiency in Differentiating Focal Liver Lesions. Frontiers in Oncology, 2021, 11, 704218.	2.8	3

LI-DA CHEN

#	Article	IF	CITATIONS
37	Comparison of Real-Time Two-Dimensional and Three-Dimensional Contrast-Enhanced Ultrasound to Quantify Flow in an In Vitro Model: A Feasibility Study. Medical Science Monitor, 2019, 25, 10029-10035.	1.1	3
38	Contrast-enhanced US diagnostic algorithm of hepatocellular carcinoma in patients with occult hepatitis B. Abdominal Radiology, 2021, 47, 608.	2.1	3
39	Non-Invasive Diagnostic Criteria for Hepatocellular Carcinoma in Hepatitis B Virus-Endemic Areas: Is Cirrhosis Indispensable?. Digestive Diseases, 2018, 36, 228-235.	1.9	2
40	Clinicopathological findings and imaging features of intraductal papillary neoplasm of the bile duct: comparison between contrast-enhanced ultrasound and contrast-enhanced computed tomography. Abdominal Radiology, 2019, 44, 2409-2417.	2.1	2
41	Application of ultrasound-guided biopsy and percutaneous radiofrequency ablation in 2 cases with phosphaturic mesenchymal tumor and literature review. Clinical Hemorheology and Microcirculation, 2021, 77, 61-69.	1.7	2
42	<scp>Contrastâ€Enhanced</scp> Ultrasoundâ€Based Nomogram. Journal of Ultrasound in Medicine, 2022, 41, 1925-1938.	1.7	2
43	Hilar biliary neurofibroma without neurofibromatosis: case report with contrast-enhanced ultrasound findings. Journal of Medical Ultrasonics (2001), 2016, 43, 537-543.	1.3	1
44	Ultrasound virtual endoscopy: Polyp detection and reliability of measurement in an <i>in vitro</i> study with pig intestine specimens. World Journal of Gastroenterology, 2016, 22, 3355-3362.	3.3	1
45	Transabdominal Ultrasound Colonography for Detection of Colorectal Neoplasms: Initial Clinical Experience. Ultrasound in Medicine and Biology, 2017, 43, 2174-2181.	1.5	0
46	Can monodisperse microbubble-based three-dimensional contrast-enhanced ultrasound reduce quantitative heterogeneity? An in vitro study. Advances in Clinical and Experimental Medicine, 2022, 31, 307-315.	1.4	0