Antonio Braga

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2348369/publications.pdf Version: 2024-02-01

ΔΝΤΟΝΙΟ ΒΡΛΟΛ

#	Article	IF	CITATIONS
1	Vinylic Tellurides:Â From Preparation to Their Applicability in Organic Synthesis. Chemical Reviews, 2006, 106, 1032-1076.	47.7	233
2	Antioxidant properties of new chalcogenides against lipid peroxidation in rat brain. Neurochemical Research, 2002, 27, 297-303.	3.3	170
3	"The green side of the moon: ecofriendly aspects of organoselenium chemistry― RSC Advances, 2014, 4, 31521-31535.	3.6	169
4	Effect of Organic Forms of Selenium on δ-Aminolevulinate Dehydratase from Liver, Kidney, and Brain of Adult Rats. Toxicology and Applied Pharmacology, 1998, 149, 243-253.	2.8	165
5	An Efficient One-Pot Synthesis of Symmetrical Diselenides or Ditellurides from Halides with CuO Nanopowder/Se ⁰ or Te ⁰ /Base. Organic Letters, 2010, 12, 3288-3291.	4.6	164
6	A Solvent- and Metal-Free Synthesis of 3-Chacogenyl-indoles Employing DMSO/I ₂ as an Eco-friendly Catalytic Oxidation System. Journal of Organic Chemistry, 2014, 79, 4125-4130.	3.2	157
7	GPx-Like Activity of Selenides and Selenoxides: Experimental Evidence for the Involvement of Hydroxy Perhydroxy Selenane as the Active Species. Journal of the American Chemical Society, 2012, 134, 138-141.	13.7	156
8	Regioselective, Solvent―and Metalâ€Free Chalcogenation of Imidazo[1,2â€ <i>a</i>]pyridines by Employing I ₂ /DMSO as the Catalytic Oxidation System. Chemistry - A European Journal, 2016, 22, 11854-11862.	3.3	156
9	Palladium-Catalyzed Coupling of sp2-Hybridized Tellurides. Accounts of Chemical Research, 2003, 36, 731-738.	15.6	139
10	Catalytic application of selenium and tellurium compounds as glutathione peroxidase enzyme mimetics. Journal of the Brazilian Chemical Society, 2010, 21, 2032-2041.	0.6	133
11	Diphenyl diselenide and diphenyl ditelluride differentially affect ?-aminolevulinate dehydratase from liver, kidney, and brain of mice. Journal of Biochemical and Molecular Toxicology, 2000, 14, 310-319.	3.0	130
12	Synthesis of New Chiral Aliphatic Amino Diselenides and Their Application as Catalysts for the Enantioselective Addition of Diethylzinc to Aldehydes. Organic Letters, 2003, 5, 2635-2638.	4.6	128
13	Catalytic Chalcogenylation under Greener Conditions: A Solvent-Free Sulfur- and Seleno-functionalization of Olefins via I ₂ /DMSO Oxidant System. Journal of Organic Chemistry, 2015, 80, 2120-2127.	3.2	121
14	Stereoselective Synthesis of Enynes by Nickel-Catalyzed Cross-Coupling of Divinylic Chalcogenides with Alkynes. Journal of Organic Chemistry, 2003, 68, 662-665.	3.2	116
15	Synthesis of Polyacetylenic Acids Isolated fromHeisteriaacuminata. Organic Letters, 2001, 3, 819-821.	4.6	115
16	Catalytic Applications of Chiral Organoselenium Compounds in Asymmetric Synthesis. Synlett, 2006, 2006, 1453-1466.	1.8	115
17	New Organochalcogen Multitarget Drug: Synthesis and Antioxidant and Antitumoral Activities of Chalcogenozidovudine Derivatives. Journal of Medicinal Chemistry, 2015, 58, 3329-3339.	6.4	107
18	Direct, Metalâ€free C(sp ²)â^'H Chalcogenation of Indoles and Imidazopyridines with Dichalcogenides Catalysed by KIO ₃ . Chemistry - A European Journal, 2018, 24, 4173-4180.	3.3	107

#	Article	IF	CITATIONS
19	Rose Bengal catalysed photo-induced selenylation of indoles, imidazoles and arenes: a metal free approach. Organic and Biomolecular Chemistry, 2018, 16, 880-885.	2.8	105
20	Chiral organoselenium-transition-metal catalysts in asymmetric transformations. Dalton Transactions, 2011, 40, 11347.	3.3	98
21	CuO nanoparticles: an efficient and recyclable catalyst for cross-coupling reactions of organic diselenides with aryl boronic acids. Tetrahedron Letters, 2009, 50, 6635-6638.	1.4	96
22	Addition of hydrogen halides to acetylenic selenides. Synthesis of 1-halo-1-selenoalkenes. Tetrahedron, 1996, 52, 9687-9702.	1.9	95
23	Facilitation of long-term object recognition memory by pretraining administration of diphenyl diselenide in mice. Neuroscience Letters, 2003, 341, 217-220.	2.1	85
24	Efficient Synthesis of Chiral β-Seleno Amides via Ring-Opening Reaction of 2-Oxazolines and Their Application in the Palladium-Catalyzed Asymmetric Allylic Alkylation. Journal of Organic Chemistry, 2005, 70, 9021-9024.	3.2	84
25	Enantioselective Synthesis Mediated by Catalytic Chiral Organoselenium Compounds. Current Organic Chemistry, 2006, 10, 1921-1938.	1.6	82
26	Renal and hepatic ALA-D activity and selected oxidative stress parameters of rats exposed to inorganic mercury and organoselenium compounds. Food and Chemical Toxicology, 2004, 42, 17-28.	3.6	80
27	Chiral Seleno-Amines from Indium Selenolates. A Straightforward Synthesis of Selenocysteine Derivatives. Journal of Organic Chemistry, 2006, 71, 4305-4307.	3.2	78
28	DMSO/iodine-catalyzed oxidative C–Se/C–S bond formation: a regioselective synthesis of unsymmetrical chalcogenides with nitrogen- or oxygen-containing arenes. Catalysis Science and Technology, 2016, 6, 3087-3098.	4.1	76
29	Chiral diselenide ligands for the asymmetric copper-catalyzed conjugate addition of Grignard reagents to enones. Tetrahedron Letters, 2002, 43, 7329-7331.	1.4	74
30	Imidazolium ionic liquids containing selenium: synthesis and antimicrobial activity. Organic and Biomolecular Chemistry, 2011, 9, 1001-1003.	2.8	74
31	Synthesis of Unsymmetrical Diorganyl Chalcogenides under Greener Conditions: Use of an Iodine/DMSO System, Solvent―and Metalâ€Free Approach. Advanced Synthesis and Catalysis, 2015, 357, 1446-1452.	4.3	72
32	Catalytic enantioselective arylation of aldehydes: boronic acids as a suitable source of transferable aryl groups. Chemical Communications, 2005, , 2512.	4.1	71
33	Acceleration of Arylzinc Formation and Its Enantioselective Addition to Aldehydes by Microwave Irradiation and Aziridine-2-methanol Catalysts. Journal of Organic Chemistry, 2008, 73, 2879-2882.	3.2	70
34	Eco-friendly cross-coupling of diaryl diselenides with aryl and alkyl bromides catalyzed by CuO nanopowder in ionic liquid. Green Chemistry, 2009, 11, 1521.	9.0	69
35	Hydroselenation of Alkynes by Lithium Butylselenolate:  An Approach in the Synthesis of Vinylic Selenides. Organic Letters, 2004, 6, 1135-1138.	4.6	68
36	Reaction of diphenyl diselenide with hydrogen peroxide and inhibition of delta-aminolevulinate dehydratase from rat liver and cucumber leaves. Brazilian Journal of Medical and Biological Research, 2002, 35, 623-631.	1.5	67

#	Article	IF	CITATIONS
37	Synthesis and antitumor activity of selenium-containing quinone-based triazoles possessing two redox centres, and theirÂmechanistic insights. European Journal of Medicinal Chemistry, 2016, 122, 1-16.	5.5	65
38	Convenient preparation of alkynyl selenides, sulfides and tellurides from terminal alkynes and prenylchalcogenyl halides in the presence of copper(I) iodide. Tetrahedron Letters, 1993, 34, 8041-8042.	1.4	64
39	Facile and practical enantioselective synthesis of propargylic alcohols by direct addition of alkynes to aldehydes catalyzed by chiral disulfide–oxazolidine ligands. Tetrahedron, 2002, 58, 10413-10416.	1.9	64
40	Effects of age on reserpine-induced orofacial dyskinesia and possible protection of diphenyl diselenide. Brain Research Bulletin, 2004, 64, 339-345.	3.0	64
41	Pharmacology and toxicology of diphenyl diselenide in several biological models. Brazilian Journal of Medical and Biological Research, 2007, 40, 1287-1304.	1.5	64
42	Synthesis and biological evaluation of new nitrogen-containing diselenides. European Journal of Medicinal Chemistry, 2014, 87, 131-139.	5.5	64
43	Hybrid compounds with two redox centres: Modular synthesis of chalcogen-containing lapachones and studies on their antitumor activity. European Journal of Medicinal Chemistry, 2015, 101, 254-265.	5.5	63
44	Solvent―and Metalâ€Free Chalcogenation of Bicyclic Arenes Using I ₂ /DMSO as Nonâ€Metallic Catalytic System. European Journal of Organic Chemistry, 2017, 2017, 4740-4748.	2.4	61
45	Synthesis and evaluation of dihydropyrimidinone-derived selenoesters as multi-targeted directed compounds against Alzheimer's disease. Bioorganic and Medicinal Chemistry, 2016, 24, 5762-5770.	3.0	60
46	Synthesis and structural characterisation of the aggregates of benzo-1,2-chalcogenazole 2-oxides. Dalton Transactions, 2017, 46, 6570-6579.	3.3	60
47	New acetylenic furan derivatives: synthesis and anti-inflammatory activity. Tetrahedron Letters, 2001, 42, 8927-8930.	1.4	59
48	Efficient Synthesis of Modular Amino Acid Derivatives Containing Selenium with Pronounced GPx‣ike Activity. European Journal of Organic Chemistry, 2009, 2009, 4211-4214.	2.4	59
49	Diphenyl diselenide derivatives inhibit microbial biofilm formation involved in wound infection. BMC Microbiology, 2016, 16, 220.	3.3	57
50	C–S cross-coupling of thiols with aryl iodides under ligand-free conditions using nano copper oxide as a recyclable catalyst in ionic liquid. Catalysis Science and Technology, 2011, 1, 569.	4.1	56
51	Electrochemical synthesis of selenyl-dihydrofurans <i>via</i> anodic selenofunctionalization of allyl-naphthol/phenol derivatives and their anti-Alzheimer activity. Organic and Biomolecular Chemistry, 2020, 18, 4916-4921.	2.8	56
52	Alkynyl sulfides and selenides from alkynyl bromides and diorganoyl chalcogenides promoted by copper(I) iodide. Tetrahedron Letters, 1993, 34, 393-394.	1.4	55
53	Synthesis and anti-inflammatory activity of acetylenic thiophenes. Tetrahedron Letters, 2001, 42, 7921-7923.	1.4	55
54	Modular chiral selenium-containing oxazolines: synthesis and application in the palladium-catalyzed asymmetric allylic alkylation. Tetrahedron, 2005, 61, 11664-11671.	1.9	55

#	Article	IF	CITATIONS
55	Recent Advances in Electrochemical Chalcogen (S/Se)â€Functionalization of Organic Molecules. ChemElectroChem, 2019, 6, 5928-5940.	3.4	55
56	Straightforward Synthesis of Non-Natural Selenium Containing Amino Acid Derivatives and Peptides. European Journal of Organic Chemistry, 2005, 2005, 4260-4264.	2.4	54
57	KIO ₃ â€Catalyzed C(sp ²)â€H Bond Selenylation/Sulfenylation of (Hetero)arenes: Synthesis of Chalcogenated (Hetero)arenes and their Evaluation for Antiâ€Alzheimer Activity. Asian Journal of Organic Chemistry, 2018, 7, 1819-1824.	2.7	54
58	Synthesis of telluroamino acid derivatives with remarkable GPx like activity. Organic and Biomolecular Chemistry, 2009, 7, 43-45.	2.8	53
59	NH4I-catalyzed chalcogen(S/Se)-functionalization of 5-membered N-heteroaryls under metal-free conditions. Tetrahedron, 2018, 74, 3971-3980.	1.9	53
60	Stereoselective addition of sodium organyl chalcogenolates to alkynylphosphonates: synthesis of diethyl 2-(organyl)-2-(organochalcogenyl)vinylphosphonates. Tetrahedron Letters, 2000, 41, 161-163.	1.4	51
61	Catalytic enantioselective arylations: boron to zinc exchange as a powerful tool for the generation of transferable aryl groups. Journal of the Brazilian Chemical Society, 2008, 19, 813-830.	0.6	51
62	Efficient synthesis of selenol esters from acid chlorides mediated by indium metal. Tetrahedron, 2009, 65, 4614-4618.	1.9	51
63	Efficient synthesis of selenoesters from acyl chlorides mediated by CuO nanopowder in ionic liquid. Green Chemistry, 2010, 12, 957.	9.0	51
64	Metal- and Solvent-Free Approach to Access 3-Se/S-Chromones from the Cyclization of Enaminones in the Presence of Dichalcogenides Catalyzed by KIO ₃ . ACS Omega, 2017, 2, 2280-2290.	3.5	51
65	Vicinal Difunctionalization of Alkynyl Selenides with Lithium Butylcyano Cuprate and Electrophiles. Synthetic Communications, 1994, 24, 1165-1170.	2.1	50
66	Zn in ionic liquid: an efficient reaction media for the synthesis of diorganyl chalcogenides and chalcogenoesters. Tetrahedron, 2011, 67, 4723-4730.	1.9	50
67	Selenoxides inhibit Î-aminolevulinic acid dehydratase. Toxicology Letters, 2001, 119, 27-37.	0.8	49
68	Synthesis of selenol esters from diorganyl diselenides and acyl chlorides under solvent-free conditions and microwave irradiation. Green Chemistry, 2012, 14, 456.	9.0	49
69	Synthesis of Selenium-Quinone Hybrid Compounds with Potential Antitumor Activity via Rh-Catalyzed C-H Bond Activation and Click Reactions. Molecules, 2018, 23, 83.	3.8	49
70	Trihaloisocyanuric acids in ethanol: an eco-friendly system for the regioselective halogenation of imidazo-heteroarenes. Green Chemistry, 2020, 22, 3410-3415.	9.0	49
71	A new functionalized, chiral disulfide derived from l-cysteine: (R,R)-bis[(3-benzyloxazolan-4-yl)-methane] disulfide as a catalyst in the diethylzinc addition to aldehydes. Tetrahedron: Asymmetry, 1999, 10, 1733-1738.	1.8	48
72	Synthesis of Thiol, Selenol, and Tellurol Esters by the Reaction of Organochalcogeno Mercurials with Acid Chlorides. Organometallics, 1999, 18, 5183-5186.	2.3	48

#	Article	IF	CITATIONS
73	Copper salt-catalyzed homo-coupling reaction of potassium alkynyltrifluoroborates: a simple and efficient synthesis of symmetrical 1,3-diynes. Tetrahedron Letters, 2008, 49, 2366-2370.	1.4	48
74	Imidazolium-containing diselenides for catalytic oxidations with hydrogen peroxide and sodium bromide in aqueous solutions. Tetrahedron, 2012, 68, 10476-10481.	1.9	48
75	Copper-Catalyzed Synthesis of Unsymmetrical Diorganyl Chalcogenides (Te/Se/S) from Boronic Acids under Solvent-Free Conditions. Molecules, 2017, 22, 1367.	3.8	48
76	Creatine protects against the convulsive behavior and lactate production elicited by the intrastriatal injection of methylmalonate. Neuroscience, 2003, 118, 1079-1090.	2.3	47
77	Synthetic approaches to 2-tetralones. Tetrahedron, 2004, 60, 8295-8328.	1.9	47
78	Organocatalytic asymmetric aldol reactions mediated by a cysteine-derived prolinamide. Tetrahedron Letters, 2008, 49, 5094-5097.	1.4	47
79	Microwave-assisted one-pot synthesis of symmetrical diselenides, ditellurides and disulfides from organoyl iodides and elemental chalcogen catalyzed by CuO nanoparticles. Journal of Molecular Catalysis A, 2012, 365, 186-193.	4.8	47
80	Stereoselective sp2–sp2 bond formation via Negishi cross-coupling of vinylic tellurides and 2-heteroarylzinc chlorides. Tetrahedron Letters, 2004, 45, 4823-4826.	1.4	46
81	Solvent- and metal-free selective oxidation of thiols to disulfides using I2/DMSO catalytic system. Tetrahedron Letters, 2017, 58, 4713-4716.	1.4	46
82	Stereoselective synthesis of Boc-protected l-seleno- and tellurolanthionine, l-seleno- and tellurocystine and derivatives. Tetrahedron Letters, 2006, 47, 1019-1021.	1.4	45
83	Comparative Studies on Dicholesteroyl Diselenide and Diphenyl Diselenide as Antioxidant Agents and their Effect on the Activities of Na+/K+ ATPase and Îʿ-Aminolevulinic acid Dehydratase in the Rat Brain. Neurochemical Research, 2008, 33, 167-178.	3.3	45
84	Ring opening of unprotected aziridines by zinc selenolates in a biphasic system. Tetrahedron Letters, 2009, 50, 2309-2311.	1.4	45
85	Metalâ€Free Air Oxidation of Thiols in Recyclable Ionic Liquid: A Simple and Efficient Method for the Synthesis of Disulfides. European Journal of Organic Chemistry, 2010, 2010, 2661-2665.	2.4	44
86	On the investigation of hybrid quinones: synthesis, electrochemical studies and evaluation of trypanocidal activity. RSC Advances, 2015, 5, 78047-78060.	3.6	43
87	Electrochemical Oxidative C(sp ²)–H Bond Selenylation of Activated Arenes. European Journal of Organic Chemistry, 2019, 2019, 6465-6469.	2.4	43
88	An Intramolecular Wittig Reaction Leading to Protected Terminal Acetylenes. Synthesis, 1984, 1984, 240-243.	2.3	42
89	Synthesis of ketene (S, Te)acetals and their transformation into Z-α-phenylthio-α,β-unsaturated aldehydes. Tetrahedron, 1999, 55, 7421-7432.	1.9	42
90	Synthesis of chalcogenol esters from chalcogenoacetylenes. Tetrahedron, 2001, 57, 3297-3300.	1.9	42

#	Article	IF	CITATIONS
91	Synthesis of 3â€5elenylindoles under EcoÂfriendly Conditions. European Journal of Organic Chemistry, 2015, 2015, 5070-5074.	2.4	42
92	Novel selenylated imidazo[1,2-a]pyridines for breast cancer chemotherapy: Inhibition of cell proliferation by Akt-mediated regulation, DNA cleavage and apoptosis. Biochemical and Biophysical Research Communications, 2018, 503, 1291-1297.	2.1	42
93	Electrochemical Selenation/Cyclization of Quinones: A Rapid, Green and Efficient Access to Functionalized Trypanocidal and Antitumor Compounds. European Journal of Organic Chemistry, 2020, 2020, 4474-4486.	2.4	42
94	Electrohalogenation of organic compounds. Organic and Biomolecular Chemistry, 2021, 19, 2578-2602.	2.8	42
95	Oxalate modulates thiobarbituric acid reactive species (TBARS) production in supernatants of homogenates from rat brain, liver and kidney: Effect of diphenyl diselenide and diphenyl ditelluride. Chemico-Biological Interactions, 2007, 165, 87-98.	4.0	41
96	Copper(I)-Catalyzed Efficient and Stereoselective Synthesis of (<i>E</i>)-Vinyl Selenides and Tellurides by the Reaction of Potassium Vinyltrifluoroborates with Diphenyl Dichalcogenides. Organometallics, 2008, 27, 4009-4012.	2.3	41
97	Chiral Chalcogen Peptides as Ligands for the Catalytic Enantioselective Aryl Transfer Reaction to Aldehydes. European Journal of Organic Chemistry, 2010, 2010, 3574-3578.	2.4	41
98	An organic selenium compound attenuates apomorphine-induced stereotypy in mice. Neuroscience Letters, 2006, 410, 198-202.	2.1	40
99	Selenides and diselenides containing oxadiazoles: a new class of functionalised materials. Liquid Crystals, 2012, 39, 769-777.	2.2	40
100	Efficient synthesis of diorganyl selenides via cleavage of Se–Se bond of diselenides by indium(III) catalyst and zinc. Tetrahedron Letters, 2006, 47, 7195-7198.	1.4	39
101	Ionic liquid: an efficient and recyclable medium for synthesis of unsymmetrical diorganyl selenides promoted by InI. Organic and Biomolecular Chemistry, 2009, 7, 4647.	2.8	39
102	Synthesis and Biological Evaluation of 2-Picolylamide-Based Diselenides with Non-Bonded Interactions. Molecules, 2015, 20, 10095-10109.	3.8	39
103	Synthesis of Functionalized Organoselenium Materials: Selenides and Diselenides Containing Cholesterol. European Journal of Organic Chemistry, 2015, 2015, 3470-3476.	2.4	39
104	Recent Advances in the Synthesis of Biologically Relevant Selenium-containing 5-Membered Heterocycles. Current Organic Chemistry, 2015, 20, 166-188.	1.6	39
105	Stereoconservative Formation and Reactivity of α-Chalcogen-Functionalized Vinyllithium Compounds from α-Bromo-vinylic Chalcogenides. Synlett, 1997, 1997, 595-596.	1.8	38
106	Synthesis of Î ² -organotelluro vinylphosphine oxides by hydrotelluration of 1-alkynylphosphine oxides and their palladium-catalyzed cross-coupling with alkynes. Tetrahedron Letters, 2002, 43, 4399-4402.	1.4	38
107	Sonogashira cross-coupling reaction of organotellurium dichlorides with terminal alkynes. Tetrahedron Letters, 2003, 44, 1779-1781.	1.4	38
108	Catalytic enantioselective aryl transfer: asymmetric addition of boronic acids to aldehydes using pyrrolidinylmethanols as ligands. Tetrahedron Letters, 2005, 46, 7827-7830.	1.4	38

#	Article	IF	CITATIONS
109	Pro-oxidant action of diphenyl diselenide in the yeast Saccharomyces cerevisiae exposed to ROS-generating conditions. Life Sciences, 2005, 77, 2398-2411.	4.3	38
110	Novel pyrimidinic selenourea induces DNA damage, cell cycle arrest, and apoptosis in human breast carcinoma. European Journal of Medicinal Chemistry, 2018, 155, 503-515.	5.5	38
111	Stereospecific Formation of Chalcogenoenynes via Palladium Catalysed Cross-Coupling Reaction of α-Bromovinylic Chalcogenides. Synthesis, 1998, 1998, 39-41.	2.3	37
112	Fe ₃ O ₄ Nanoparticles: A Robust and Magnetically Recoverable Catalyst for Direct Câ€H Bond Selenylation and Sulfenylation of Benzothiazoles. ChemistrySelect, 2018, 3, 328-334.	1.5	37
113	Borophosphate glasses: Synthesis, characterization and application as catalyst for bis(indolyl)methanes synthesis under greener conditions. Journal of Non-Crystalline Solids, 2018, 498, 153-159.	3.1	37
114	A simple and general preparation of vinylic sulfides, selenides and tellurides. Journal of Organometallic Chemistry, 2008, 693, 3787-3790.	1.8	36
115	K ₂ CO ₃ -mediated, direct C–H bond selenation and thiolation of 1,3,4-oxadiazoles in the absence of metal catalyst: an eco-friendly approach. RSC Advances, 2014, 4, 51648-51652.	3.6	36
116	Synthesis of Diorganyl Selenides Mediated by Zinc in Ionic Liquid. Journal of Organic Chemistry, 2010, 75, 3886-3889.	3.2	35
117	Copperâ€Catalyzed Threeâ€Component Reaction of Oxadiazoles, Elemental Se/S and Aryl Iodides: Synthesis of Chalcogenyl (Se/S)â€Oxadiazoles. ChemistrySelect, 2018, 3, 13191-13196.	1.5	35
118	Photoinduced, Direct C(sp ²)â^'H Bond Azo Coupling of Imidazoheteroarenes and Imidazoanilines with Aryl Diazonium Salts Catalyzed by Eosinâ€Y. Chemistry - A European Journal, 2020, 26, 4461-4466.	3.3	35
119	The Thiol-Modifier Effects of Organoselenium Compounds and Their Cytoprotective Actions in Neuronal Cells. Neurochemical Research, 2021, 46, 120-130.	3.3	35
120	New C 2 -symmetric chiral disulfide ligands derived from (R)-cysteine. Tetrahedron, 2001, 57, 3291-3295.	1.9	34
121	The facile synthesis of chiral oxazoline catalysts for the diethylzinc addition to aldehydes. Tetrahedron: Asymmetry, 2003, 14, 3291-3295.	1.8	34
122	Seleno-Imine: A New Class of Versatile, Modular N,Se Ligands for ÂAsymmetric Palladium-Catalyzed Allylic Alkylation. Synlett, 2005, 2005, 1675-1678.	1.8	34
123	Modular chiral β-selenium-, sulfur-, and tellurium amides: synthesis and application in the palladium-catalyzed asymmetric allylic alkylation. Tetrahedron, 2008, 64, 392-398.	1.9	34
124	A convenient synthetic route for alkynylselenides from alkynyl bromides and diaryl diselenides employing copper(I)/imidazole as novel catalyst system. Tetrahedron Letters, 2008, 49, 5172-5174.	1.4	34
125	Synthesis of selenium- and tellurium-containing nucleosides derived from uridine. Tetrahedron Letters, 2009, 50, 3005-3007.	1.4	34
126	An efficient synthesis of alkynyl selenides and tellurides from terminal acetylenes and diorganyl diselenides or ditellurides catalyzed by recyclable copper oxide nanopowder. Tetrahedron, 2012, 68, 10426-10430.	1.9	33

#	ARTICLE	IF	CITATIONS
127	Lightâ€Mediated Selenoâ€Functionalization of Organic Molecules: Recent Advances. Chemical Record, 2021, 21, 2739-2761.	5.8	33
128	Diethyl 2-phenyl-2 tellurophenyl vinylphosphonate: An organotellurium compound with low toxicity. Toxicology, 2006, 224, 100-107.	4.2	32
129	Pyrolysis of α-acyl,α,-thio phosphoranes → thioacetylenes. Tetrahedron Letters, 1984, 25, 1111-1114.	1.4	31
130	First Generation Cysteine- and Methionine-Derived Oxazolidine and Thiazolidine Ligands for Palladium-Catalyzed Asymmetric Allylations. European Journal of Organic Chemistry, 2004, 2004, 2715-2722.	2.4	31
131	Acetylenic Selenides and Tellurides from 1-Bromo, 2-Phenyl Ethyne. Synthetic Communications, 1988, 18, 1979-1983.	2.1	30
132	Microwave-accelerated asymmetric allylations using cysteine derived oxazolidine and thiazolidine palladium complexes. Journal of Molecular Catalysis A, 2005, 239, 235-238.	4.8	30
133	Modular chiral thiazolidine catalysts in asymmetric aryl transfer reactions. Tetrahedron: Asymmetry, 2006, 17, 2793-2797.	1.8	30
134	Ephedrine-based diselenide: a promiscuous catalyst suitable to mimic the enzyme glutathione peroxidase (GPx) and to promote enantioselective C–C coupling reactions. Organic and Biomolecular Chemistry, 2012, 10, 6595.	2.8	30
135	KIO ₄ â€mediated Selective Hydroxymethylation/Methylenation of Imidazoâ€Heteroarenes: A Greener Approach. Angewandte Chemie - International Edition, 2021, 60, 18454-18460.	13.8	30
136	Stereoselective synthesis of α-phenylchalcogeno-α,β-unsaturated esters. Tetrahedron Letters, 2002, 43, 3395-3397.	1.4	29
137	Preparation and nickel-catalyzed coupling reactions of divinylic selenides. Tetrahedron Letters, 2002, 43, 7517-7520.	1.4	29
138	Synthesis of Thiol Esters Using Nano CuO/Ionic Liquid as an Ecoâ€Friendly Reductive System Under Microwave Irradiation. European Journal of Organic Chemistry, 2013, 2013, 5188-5194.	2.4	29
139	Stereospecific formation of enynephosphonates via palladium-catalyzed cross-coupling reaction of β-organotelluro vinylphosphonates with alkynes. Tetrahedron Letters, 2001, 42, 8563-8565.	1.4	28
140	One-Pot Synthesis of New Chiral Sulfides and Selenides Containing OxazolidinesÂ : Catalyst in the Enantioselective Addition of Diethylzinc to BenzaldehydeÂ . Synthesis, 2002, 2002, 2338-2340.	2.3	28
141	Synthesis of new chiral imidazolidine disulfides derived from l-cystine and their application in the enantioselective addition of diethylzinc to aldehydes. Tetrahedron Letters, 2002, 43, 2335-2337.	1.4	28
142	Synthesis and application of chiral βâ€amino disulfides as ligands for the enantioselective addition of diethylzinc to aldehydes. Chirality, 2008, 20, 839-845.	2.6	28
143	3′3-Ditrifluoromethyldiphenyl diselenide: A new organoselenium compound with interesting antigenotoxic and antimutagenic activities. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2009, 673, 133-140.	1.7	28
144	Bimetallic system for the synthesis of diorganyl selenides and sulfides, chiral Î ² -seleno amines, and seleno- and thioesters. Tetrahedron Letters, 2011, 52, 3592-3596.	1.4	28

#	Article	IF	CITATIONS
145	Design, synthesis and evaluation of seleno-dihydropyrimidinones as potential multi-targeted therapeutics for Alzheimer's disease. Organic and Biomolecular Chemistry, 2014, 12, 3470-3477.	2.8	28
146	Succinobucol, a Lipid-Lowering Drug, Protects Against 3-Nitropropionic Acid-Induced Mitochondrial Dysfunction and Oxidative Stress in SH-SY5Y Cells via Upregulation of Glutathione Levels and Glutamate Cysteine Ligase Activity. Molecular Neurobiology, 2016, 53, 1280-1295.	4.0	28
147	Pictet-Spengler condensation of N-sulfonyl-β-phenethylamines with α-chloro-α-phenylselenoesters. New synthesis of 1,2,3,4-tetrahydroisoquinoline-1-carboxylates. Tetrahedron Letters, 1999, 40, 4969-4972.	1.4	27
148	Stereoselective Synthesis of (Z)-Enynes via Pd(II)/Cul(I)-Catalyzed Cross-Coupling Reaction of bis-Vinylic Tellurides with 1-Alkynes. Synlett, 2001, 2001, 1473-1475.	1.8	27
149	Stereoselective preparation of conjugated E-enynes from E-vinylic tellurides and terminal alkynes via Sonogashira cross-couplingElectronic supplementary information (ESI) available: spectroscopic data for all new compounds as well as detailed experimental procedures. See http://www.rsc.org/suppdata/ob/b4/b401059k/. Organic and Biomolecular Chemistry. 2004. 2. 803.	2.8	27
150	Synthesis of azido arylselenides and azido aryldiselenides: a new class of selenium–nitrogen compounds. Tetrahedron Letters, 2010, 51, 3364-3367.	1.4	27
151	Magnetite (Fe3O4) nanoparticles: an efficient and recoverable catalyst for the synthesis of alkynyl chalcogenides (selenides and tellurides) from terminal acetylenes and diorganyl dichalcogenides. Tetrahedron, 2014, 70, 3349-3354.	1.9	27
152	Regioselective hydrothiolation of terminal acetylene catalyzed by magnetite (Fe ₃ O ₄) nanoparticles. Synthetic Communications, 2017, 47, 291-298.	2.1	27
153	Copper complexes and carbon nanotube–copper ferrite-catalyzed benzenoid A-ring selenation of quinones: an efficient method for the synthesis of trypanocidal agents. New Journal of Chemistry, 2019, 43, 13751-13763.	2.8	27
154	Synthesis of Cross-Conjugated Geminal Enediynes via Palladium Catalyzed Cross-Coupling Reaction of Ketene Butyltelluroacetals. Synlett, 2002, 2002, 0975-0977.	1.8	26
155	1-Substituted β-Carbolines by a Pictetâ^'Spengler Cyclization with Thioortho Esters and Carbonâ^'Carbon Bond Formation viaN-Sulfonyl Iminium Ions Generated fromN,S-Sulfonyl Acetals. Organic Letters, 2005, 7, 3701-3704.	4.6	26
156	Oneâ€Pot Indium lodide Mediated Synthesis of Chiral βâ€5eleno Amides and Selenocysteine Derivatives by Ringâ€Opening Reaction of 2â€Oxazolines. European Journal of Organic Chemistry, 2007, 2007, 5327-5331.	2.4	26
157	New class of amino-phosphinite chiral catalysts for the highly enantioselective addition of arylzinc reagents to aldehydes. Tetrahedron, 2010, 66, 1341-1345.	1.9	26
158	Ionic liquid: an efficient and reusable media for seleno- and thioester synthesis promoted by indium. Tetrahedron Letters, 2010, 51, 5728-5731.	1.4	26
159	Borophosphate glass as an active media for CuO nanoparticle growth: an efficient catalyst for selenylation of oxadiazoles and application in redox reactions. Scientific Reports, 2020, 10, 15233.	3.3	26
160	Addition of tellurium tetrabromides and alkyl and aryl tellurium tribromides to terminal acetylenes. Journal of Organometallic Chemistry, 1998, 562, 127-131.	1.8	25
161	Phenyltelluroacrylonitriles and phenylselenoacrylonitriles as precursors of (Z)-α-phenylseleno-α,β-unsaturated aldehydes, β-amino-α-phenylselenonitriles and Diels–Alder adducts. Tetrahedron, 2001, 57, 5953-5959.	1.9	25
162	â€~One-Pot' Synthesis of Chiral N-Protected α-Amino Acid-Derived 1,2,4-Oxadiazoles. Synthesis, 2004, 2004, 1589-1594.	2.3	25

#	Article	IF	CITATIONS
163	Stereoselective Mannich-type reaction of chlorotitanium α-phenylseleno esters enolates with aromatic aldimines. Tetrahedron, 2005, 61, 9312-9318.	1.9	25
164	Selenocysteine incorporation in Kinetoplastid: Selenophosphate synthetase (SELD) from Leishmania major and Trypanosoma brucei. Molecular and Biochemical Parasitology, 2008, 162, 165-171.	1.1	25
165	Studies on the antioxidant effect and interaction of diphenyl diselenide and dicholesteroyl diselenide with hepatic δ-aminolevulinic acid dehydratase and isoforms of lactate dehydrogenase. Toxicology in Vitro, 2009, 23, 14-20.	2.4	25
166	Antioxidant activity of β-selenoamines and their capacity to mimic different enzymes. Molecular and Cellular Biochemistry, 2012, 365, 85-92.	3.1	25
167	"Green Is the Color†An Update on Ecofriendly Aspects of Organoselenium Chemistry. Molecules, 2022, 27, 1597.	3.8	25
168	A convenient synthesis of 4-phenylchalcogeno allenic esters from α-(phenylchalcogeno)acid chlorides. Tetrahedron Letters, 2000, 41, 1867-1869.	1.4	24
169	New Aziridine Sulfide Ligands for Palladium-Catalyzed Asymmetric Allylic Alkylation. Synlett, 2004, 2004, 1297-1299.	1.8	24
170	A new approach to (±)-heritonin. The preparation of β-tetralones from allylsilanes and acid chlorides. Tetrahedron Letters, 2004, 45, 4077-4080.	1.4	24
171	Stereoselective synthesis of selenosteroids. Tetrahedron Letters, 2010, 51, 2237-2240.	1.4	24
172	Microwave-Mediated Palladium-Catalyzed Asymmetric Allylic Alkylation Using Chiral -Seleno Amides. European Journal of Organic Chemistry, 2006, 2006, 4993-4997.	2.4	23
173	Diphenyl diselenide decreases the prevalence of vacuous chewing movements induced by fluphenazine in rats. Psychopharmacology, 2007, 194, 423-432.	3.1	23
174	Charge-displacement analysis as a tool to study chalcogen bonded adducts and predict their association constants in solution. Dalton Transactions, 2015, 44, 20168-20175.	3.3	23
175	Apoptosis oxidative damageâ€mediated and antiproliferative effect of selenylated imidazo[1,2â€ <i>a</i>]pyridines on hepatocellular carcinoma HepG2 cells and in vivo. Journal of Biochemical and Molecular Toxicology, 2021, 35, e22663.	3.0	23
176	A chiral disulfide derived from (R)-cysteine in the enantioselective addition of diethylzinc to aldehydes: loading effect and asymmetric amplification. Journal of Molecular Catalysis A, 2005, 229, 47-50.	4.8	22
177	Mild and efficient one-pot synthesis of chiral β-chalcogen amides via 2-oxazoline ring-opening reaction mediated by indium metal. Journal of Organometallic Chemistry, 2008, 693, 3563-3566.	1.8	22
178	pHâ€Dependent Fe (II) pathophysiology and protective effect of an organoselenium compound. FEBS Letters, 2009, 583, 1011-1016.	2.8	22
179	Succinobucol versus probucol: Higher efficiency of succinobucol in mitigating 3-NP-induced brain mitochondrial dysfunction and oxidative stress in vitro. Mitochondrion, 2013, 13, 125-133.	3.4	22
180	Diselenoamino acid derivatives as GPx mimics and as substrates of TrxR:in vitroandin silicostudies. Organic and Biomolecular Chemistry, 2018, 16, 3777-3787.	2.8	22

#	Article	IF	CITATIONS
181	Synthesis of ketene phenyltelluroacetals by a Wittig-Horner route. Tetrahedron Letters, 1995, 36, 7361-7362.	1.4	21
182	Elaboration of 1-benzoyltetrahydroisoquinoline derivatives employing a Pictet–Spengler cyclization with α-chloro-α-phenylthioketones. Synthesis of O-methylvelucryptine. Tetrahedron Letters, 2001, 42, 8947-8950.	1.4	21
183	Thioorthoesters in the activated Pictet–Spengler cyclization. Synthesis of 1-thiosubstituted tetrahydroisoquinolines and carbonî—carbon bond formation via sulfonyl iminium ions generated from N,S-sulfonyl acetals. Tetrahedron Letters, 2003, 44, 6137-6140.	1.4	21
184	Enhancement of iron-catalyzed lipid peroxidation by acidosis in brain homogenate: Comparative effect of diphenyl diselenide and ebselen. Brain Research, 2009, 1258, 71-77.	2.2	21
185	Evaluation of the pharmacological properties of salicylic acid-derivative organoselenium: 2-Hydroxy-5-selenocyanatobenzoic acid as an anti-inflammatory and antinociceptive compound. Pharmacology Biochemistry and Behavior, 2014, 118, 87-95.	2.9	21
186	Sensitivities of Aeromonas Hydrophila Cultured from Medicinal Leeches to Oral Antibiotics. Journal of Reconstructive Microsurgery, 1990, 6, 135-137.	1.8	20
187	Straightforward Method for the Synthesis of Selenocysteine and Selenocystine Derivatives from I-Serine Methyl Ester. Synthesis, 2010, 2010, 3131-3137.	2.3	20
188	Solventâ€Free Fmoc Protection of Amines Under Microwave Irradiation. Asian Journal of Organic Chemistry, 2013, 2, 746-749.	2.7	20
189	A Oneâ€Pot Access to Benzo[b][1,4]selenazines from 2â€Aminoaryl Diselenides. European Journal of Organic Chemistry, 2016, 2016, 3097-3102.	2.4	20
190	A Simplified Preparation of Vinyl Sulfides, Selenides and Tellurides by a Wittig-Type Reaction. Synthesis, 1997, 1997, 221-224.	2.3	19
191	Chalcogen-containing oxazolines in the palladium-catalyzed asymmetric allylic alkylation. Journal of the Brazilian Chemical Society, 2006, 17, 11-15.	0.6	19
192	Synthesis, characterization and biological evaluation of new manganese metal carbonyl compounds that contain sulfur and selenium ligands as a promising new class of CORMs. Dalton Transactions, 2019, 48, 5574-5584.	3.3	19
193	Preparation of Vinyl Tellurides via a Simplified Ylidation Reaction. Synlett, 1995, 1995, 58-60.	1.8	18
194	Palladium(II) chloride catalyzes the cross-coupling reaction of 2,5-bis-(butyltelluro)-furan and 1-alkynes. Tetrahedron Letters, 2003, 44, 1387-1390.	1.4	18
195	Stereospecific synthesis of phosphono-(1Z,3E)-dienyl compounds from β-phenyltelluro-vinylphosphonates and -vinylphosphine oxides. Journal of Organometallic Chemistry, 2003, 682, 35-40.	1.8	18
196	Aziridine sulfides and disulfides as catalysts for the enantioselective addition of diethylzinc to aldehydes. Chemical Communications, 2004, , 2488-2489.	4.1	18
197	Effect of ebselen and organochalcogenides on excitotoxicity induced by glutamate in isolated chick retina. Brain Research, 2005, 1039, 146-152.	2.2	18

Organic and inorganic forms of selenium inhibited differently fish (Rhamdia quelen) and rat (Rattus) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 5

#	Article	IF	CITATIONS
199	Formation of dimeric acetylenes: an unexpected reaction of acetylenic selenides. Journal of the Chemical Society Chemical Communications, 1986, , 1067.	2.0	17
200	Synthesis of thiolesters from thioacetylenes. Tetrahedron Letters, 1998, 39, 3395-3396.	1.4	17
201	Hydrotelluration of aminoalkynesElectronic supplementary information (ESI) available: spectroscopic data and detailed experimental procedures for all new compounds. See http://www.rsc.org/suppdata/cc/b3/b301857a/. Chemical Communications, 2003, , 1258-1259.	4.1	17
202	Fast and easy conversion of <i>ortho</i> amidoaryldiselenides into the corresponding ebselen-like derivatives driven by theoretical investigations. New Journal of Chemistry, 2020, 44, 9444-9451.	2.8	17
203	New Probucol Analogues Inhibit Ferroptosis, Improve Mitochondrial Parameters, and Induce Glutathione Peroxidase in HT22 Cells. Molecular Neurobiology, 2020, 57, 3273-3290.	4.0	17
204	Catalytic Antioxidant Activity of Bis-Aniline-Derived Diselenides as GPx Mimics. Molecules, 2021, 26, 4446.	3.8	17
205	Preparation of symmetrical divinyl tellurides via an ylidation reaction. Journal of Organometallic Chemistry, 1999, 584, 44-47.	1.8	16
206	2,5-Bis-(butyltelluro) thiophene as a convenient precursor for the synthesis of 2,5-bis-(acetylenic) thiophenes. Tetrahedron Letters, 2003, 44, 685-688.	1.4	16
207	Carbohydrates in asymmetric synthesis: enantioselective allylation of aldehydes. Tetrahedron Letters, 2008, 49, 4956-4957.	1.4	16
208	Hydroxyl containing seleno-imine compound exhibits improved anti-oxidant potential and does not inhibit thiol-containing enzymes. Chemico-Biological Interactions, 2011, 190, 35-44.	4.0	16
209	Versatile Electrochemical Synthesis of Selenylbenzo[b]Furan Derivatives Through the Cyclization of 2-Alkynylphenols. Frontiers in Chemistry, 2022, 10, .	3.6	16
210	Pyrolysis of α-Halophosphoranes → Haloacetylenes. Synthetic Communications, 1989, 19, 2877-2883.	2.1	15
211	Reaction of Ethyl α-Chloro-α-phenylselenoacetate with Alkenes: Synthesis of α-Phenylseleno-γ-Butyrolactones. Synthesis, 1995, 1995, 1305-1310.	2.3	15
212	Synthesis of α-phenylseleno-α,β-unsaturated esters by Wittig-type reactions. Studies on the Diels–Alder reaction. Journal of Organometallic Chemistry, 2001, 623, 131-136.	1.8	15
213	Stereoselective Synthesis of Alkynyl Vinyl Chalcogenides via Horner-Wittig Reaction. Synthesis, 2009, 2009, 469-473.	2.3	15
214	Protective effects of organoselenium compounds against methylmercury-induced oxidative stress in mouse brain mitochondrial-enriched fractions. Brazilian Journal of Medical and Biological Research, 2011, 44, 1156-1163.	1.5	15
215	Green synthesis of 1,3-diynes from terminal acetylenes under solvent-free conditions. Green Chemistry Letters and Reviews, 2014, 7, 105-112.	4.7	15
216	Dihydropyrimidinone-derived selenoesters efficacy and safety in an in vivo model of AÎ ² aggregation. NeuroToxicology, 2022, 88, 14-24.	3.0	15

#	ARTICLE	IF	CITATIONS
217	IP-Se-06, a Selenylated Imidazo[1,2-a]pyridine, Modulates Intracellular Redox State and Causes Akt/mTOR/HIF-11± and MAPK Signaling Inhibition, Promoting Antiproliferative Effect and Apoptosis in Glioblastoma Cells. Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-18.	4.0	15
218	Dichloro-bis(2-chloro-2-phenyl-vinyl)Te(IV) and dibromo-bis(2-bromo-2-phenyl-vinyl)Te(IV): supramolecular self-assembly through different π-aryl interactions. Zeitschrift Fur Kristallographie - Crystalline Materials, 2002, 217, 609-613.	0.8	14
219	New Simple Chiral Phosphine Oxazolidine Ligands: Easy Synthesis and ÂApplication in the Palladium-Catalyzed Asymmetric Allylic Alkylation. Synlett, 2005, 2005, 1331-1333.	1.8	14
220	Synthesis of new fluorous modular chiral ligand derivatives from amino alcohols and application in enantioselective carbon–carbon bond-forming alkylation reactions. Tetrahedron: Asymmetry, 2010, 21, 997-1003.	1.8	14
221	Lewis acid-catalyzed coupling reactions of allylsilanes with tris(phenylchalcogeno)methane. Synthesis of homoallylchalcogenoacetals. Tetrahedron Letters, 1996, 37, 6085-6088.	1.4	13
222	Synthesis of Dibromo-Vinyl Chalcogenides. Synthetic Communications, 2000, 30, 407-416.	2.1	13
223	Stereospecific Synthesis of Chalcogenoenynes by Palladium-Catalyzed Cross-Coupling Reaction. Synlett, 2003, 2003, 0579-0581.	1.8	13
224	Reaction of α-chloro-α-phenylselenoesters with silyl enol ethers. Synthesis of α-phenylseleno-γ-keto esters and γ-butyrolactones. Tetrahedron Letters, 1996, 37, 9173-9176.	1.4	12
225	Synthesis of ketene phenyl- and butyltelluroacetals by a Horner–Wittig route. Tetrahedron, 2005, 61, 7712-7718.	1.9	12
226	The application of chiral, non-racemic N-alkylephedrine and N,N-dialkylnorephedrine as ligands for the enantioselective aryl transfer reaction to aldehydes. Journal of Molecular Catalysis A, 2007, 261, 120-124.	4.8	12
227	Influence of pH on the reactivity of diphenyl ditelluride with thiols and anti-oxidant potential in rat brain. Chemico-Biological Interactions, 2009, 180, 47-53.	4.0	12
228	An Organoselenium Drug with Antioxidant Activity and Free Radical Scavenging Capacity In Vitro. Biological Trace Element Research, 2012, 149, 399-404.	3.5	12
229	Design, Synthesis, and In Vitro Evaluation of a Novel Probucol Derivative: Protective Activity in Neuronal Cells Through GPx Upregulation. Molecular Neurobiology, 2018, 55, 7619-7634.	4.0	12
230	Transition metal oxide nanopowder and ionic liquid: an efficient system for the synthesis of diorganyl selenides, selenocysteine and derivatives. Journal of the Brazilian Chemical Society, 2010, 21, 2079-2087.	0.6	12
231	Synthesis of Vinylic Chalcogenides (S, Se, Te) by Wittig and the Horner-Wittig Reactions. Phosphorus, Sulfur and Silicon and the Related Elements, 2001, 172, 55-100.	1.6	11
232	Desulfonylation of N-Sulfonyl Tetrahydroisoquinoline Derivatives by Potassium Fluoride on Alumina Under Microwave Irradiation: Selective Synthesis of 3,4-Dihydroisoquinolines and Isoquinolines. Synlett, 2002, 2002, 0907-0910.	1.8	11
233	Preparation and reactivity of phenyltelluroalkylphosphine oxides. Vinylic tellurides. Tetrahedron Letters, 2003, 44, 5703-5705.	1.4	11
234	A New Cysteine-Derived Ligand as Catalyst for the Addition of Diethylzinc to Aldehydes: The Importance of a †Free' Sulfide Site for Enantioselectivity. Synthesis, 2005, 2005, 588-594.	2.3	11

#	Article	IF	CITATIONS
235	Modulation of diorganoyl dichalcogenides reactivity by non-bonded nitrogen interactions. Chemico-Biological Interactions, 2012, 199, 96-105.	4.0	11
236	Straightforward synthesis of non-natural l-chalcogen and l-diselenide N-Boc-protected-Î ³ -amino acid derivatives. Organic and Biomolecular Chemistry, 2013, 11, 5173.	2.8	11
237	Succinobucol, a Non-Statin Hypocholesterolemic Drug, Prevents Premotor Symptoms and Nigrostriatal Neurodegeneration in an Experimental Model of Parkinson's Disease. Molecular Neurobiology, 2017, 54, 1513-1530.	4.0	11
238	First Coupling Reaction of Terminal Alkynes with Sulfur and Selenium Substituted Vinylic Tosylates Catalyzed by Pd(II). Synlett, 2001, 2001, 0369-0370.	1.8	10
239	Aziridine-Modified Amino Alcohols as Efficient Modular Catalysts for Highly Enantioselective Alkenylzinc Additions to Aldehydes. Synlett, 2007, 2007, 0917-0920.	1.8	10
240	Hepatoprotective effect of <i>bis</i> (4â€methylbenzoyl) diselenide against CCl ₄ â€induced oxidative damage in mice. Cell Biochemistry and Function, 2013, 31, 152-158.	2.9	10
241	Cu(<scp>ii</scp>) complexes with tridentate sulfur and selenium ligands: catecholase and hydrolysis activity. New Journal of Chemistry, 2020, 44, 15698-15707.	2.8	10
242	2-Phenyl-3-(phenylselanyl)benzofuran elicits acute antidepressant-like action in male Swiss mice mediated by modulation of the dopaminergic system and reveals therapeutic efficacy in both sexes. Psychopharmacology, 2021, 238, 3013-3024.	3.1	10
243	Arylseleno and 1-Chloro-1-arylseleno Cyclopropanes from P.T.C. and Ultrasound Conditions. Synthetic Communications, 1994, 24, 2075-2080.	2.1	9
244	A Facile Synthesis of α-Phenylchalcogeno(S, Se) α,β-Unsaturated Esters from Ethyl α-Bromo-α-phenylchalcogeno Acetates. Synthetic Communications, 1998, 28, 3371-3380.	2.1	9
245	A Convenient Preparation of Chalcogenoenynes from β-Bromovinyl Ketene Chalcogenoacetals. Synlett, 2003, 2003, 1880-1882.	1.8	9
246	Bio-inspired sensor based on glutathione peroxidase mimetic for hydrogen peroxide detection. Sensors and Actuators B: Chemical, 2013, 176, 782-788.	7.8	9
247	Allylic Selenocyanates as New Agents to Combat <i>Fusarium</i> Species Involved with Human Infections. ChemistrySelect, 2017, 2, 11926-11932.	1.5	9
248	Synthesis, characterization and photoinduced CO-release by manganese(<scp>i</scp>) complexes. New Journal of Chemistry, 2020, 44, 10892-10901.	2.8	9
249	Selenium-Derivative Compounds: A Review of New Perspectives in the Treatment of Alzheimer's Disease. Current Medicinal Chemistry, 2023, 30, 689-700.	2.4	9
250	Catalyst-Dependent Selective Synthesis of O/S- and S/S-Acetals from Enol Ethers. Synthetic Communications, 1995, 25, 3155-3162.	2.1	8
251	NICKEL (II) CATALYZED SUBSTITUTION OF HALOGENS IN 1-HALO-1-CHALCOGENE ALKENES BY CHALCOGENATE ANIONS. Phosphorus, Sulfur and Silicon and the Related Elements, 1997, 126, 211-222.	1.6	8
252	Lewis Acid Mediated Selective Chalcogenalkylation of Silyl Enol Ethers with [O,S]-Acetals. Synthesis, 1999, 1999, 562-564.	2.3	8

#	Article	IF	CITATIONS
253	Activation of Peroxides by Organoselenium Catalysts: A Synthetic and Biological Perspective. , 2011, , 251-283.		8
254	Synthesis of Biologically Active Selenium-Containing Molecules From Greener Perspectives. Current Green Chemistry, 2016, 3, 51-67.	1.1	8
255	One-pot organocatalytic/multicomponent approach for the preparation of novel enantioenriched non-natural selenium-based peptoids and peptide–peptoid conjugates. Molecular Diversity, 2020, 24, 1-10.	3.9	8
256	It takes two to tango: synthesis of cytotoxic quinones containing two redox active centers with potential antitumor activity. RSC Medicinal Chemistry, 2021, 12, 1709-1721.	3.9	8
257	Versatile Electrochemical Oxidative C(sp ₂)â^H Bond Selenylation of Resveratrol. European Journal of Organic Chemistry, 2021, 2021, 4411-4416.	2.4	8
258	A Convenient Synthesis of Arylselenoacetals and α-Halo-α-(phenylseleno)alkanes. Synthetic Communications, 1995, 25, 117-126.	2.1	7
259	Highly Functionalized Selenocyclopropanes From 1-Halo-1-Chalcogeno Alkenes. Synthetic Communications, 1998, 28, 1667-1677.	2.1	7
260	Stereoselective Synthesis of (<i>Z</i>)- <i>α</i> -Organothiovinyltosylates and their Application in the Synthesis of Highly Functionalized Vinylic Sulfides. Synlett, 2001, 2001, 0371-0373.	1.8	7
261	Decreased forelimb ability in mice intracerebroventricularly injected with low dose 6-hydroxidopamine: A model on the dissociation of bradykinesia from hypokinesia. Behavioural Brain Research, 2016, 305, 30-36.	2.2	7
262	Synthesis and Antitumoral Lung Carcinoma A549 and Antioxidant Activity Assays Of New Chiral βâ€Arylâ€Chalcogenium Azide Compounds. ChemistrySelect, 2017, 2, 8423-8430.	1.5	7
263	Docking and molecular dynamics predicted B-DNA and dihydropyrimidinone selenoesters interactions elucidating antiproliferative effects on breast adenocarcinoma cells. Journal of Biomolecular Structure and Dynamics, 2022, 40, 8261-8273.	3.5	7
264	Natural Products with Tandem Anti-inflammatory, Immunomodulatory and Anti-SARS-CoV/2 Effects: A Drug Discovery Perspective against SARS-CoV-2. Current Medicinal Chemistry, 2022, 29, 2530-2564.	2.4	7
265	Structure of p-chlorophenyl(phenylseleno)acetylene. Acta Crystallographica Section C: Crystal Structure Communications, 1986, 42, 1789-1792.	0.4	6
266	Direct Synthesis of Allylic Thioethers Under Greener Conditions: A Solvent- and Catalyst-Free Approach. Synthetic Communications, 2014, 44, 3441-3449.	2.1	6
267	Novel Dihydropyrimidinone-Derived Selenoesters as Potential Cytotoxic Agents to Human Hepatocellular Carcinoma: Molecular Docking and DNA Fragmentation. Anti-Cancer Agents in Medicinal Chemistry, 2021, 21, 703-715.	1.7	6
268	KIO ₄ â€mediated Selective Hydroxymethylation/Methylenation of Imidazoâ€Heteroarenes: A Greener Approach. Angewandte Chemie, 2021, 133, 18602-18608.	2.0	6
269	Genetic toxicity of three symmetrical diselenides in yeast. Journal of the Brazilian Chemical Society, 2010, 21, 2119-2124.	0.6	6
270	Novel trypanocidal thiophen-chalcone cruzain inhibitors: structure- and ligand-based studies. Future Medicinal Chemistry, 2022, 14, 795-808.	2.3	6

#	Article	IF	CITATIONS
271	An Improved Method of Synthesis of Aryl Alkyl Sulfides. Synthetic Communications, 1982, 12, 595-600.	2.1	5
272	Stereoselective sp2?sp2 bond formation via Negishi cross-coupling of vinylic tellurides and 2-heteroarylzinc chlorides. Tetrahedron Letters, 2004, 45, 4823-4823.	1.4	5
273	A Straightforward and High-Yielding Synthesis of 1,2,4-Oxadiazoles from Chiral N-Protected α-Amino Acids and Amidoximes in Acetone-Water: An Eco-Friendly Approach. Journal of Chemistry, 2019, 2019, 1-9.	1.9	5
274	Addition of Organotellurenyl Bromide to Terminal Acetylenes. Phosphorus, Sulfur and Silicon and the Related Elements, 2001, 172, 181-188.	1.6	4
275	Modular Synthesis of Chiral N-Protected β-Seleno Amines and Amides via Cleavage of 2-Oxazolidinones and Application in Palladium-Catalyzed AsymmetricÂ-Allylic Alkylation. Synthesis, 2008, 2008, 1262-1268.	2.3	4
276	Synthesis of Arylseleno-1,2,3-triazoles via Copper-Catalyzed 1,3-Dipolar Cycloaddition of Azido Arylselenides with Alkynes. Synthesis, 2011, 2011, 2397-2406.	2.3	4
277	Efficient Ring Opening of Protected and Unprotected Aziridines Promoted by Stable Zinc Selenolate in Ionic Liquid. Synlett, 2011, 2011, 69-72.	1.8	4
278	The structure of triphenyl[α-(phenylseleno)phenacylidene]phosphorane. Acta Crystallographica Section C: Crystal Structure Communications, 1986, 42, 90-94.	0.4	3
279	Dibromo[(Z)-2-bromo-2-(hydroxymethyl)vinyl](n-butyl)tellurium(IV). Acta Crystallographica Section C: Crystal Structure Communications, 1998, 54, 2007-2009.	0.4	3
280	Atheroprotective action of a modified organoselenium compound: in vitro evidence. Anais Da Academia Brasileira De Ciencias, 2016, 88, 1953-1965.	0.8	3
281	A Novel Diselenide-Probucol-Analogue Protects Against Methylmercury-Induced Toxicity in HT22 Cells by Upregulating Peroxide Detoxification Systems: a Comparison with Diphenyl Diselenide. Neurotoxicity Research, 2022, 40, 127-139.	2.7	3
282	Synthesis and crystal structure of (Z)-1-(phenylsulphenyl)-2-phenylethenyl p-toluenesulfonate. Journal of Chemical Crystallography, 1999, 29, 677-680.	1.1	2
283	Dichloro(cyclohexilidene-1-methylene)(phenyl)Te(IV). Looking for the theoretical treatment. Zeitschrift Fur Kristallographie - Crystalline Materials, 2004, 219, 652-658.	0.8	2
284	Catálise assimétrica no Brasil: desenvolvimento e potencialidades para o avanço da indústria quÃmica brasileira. Quimica Nova, 2013, 36, 1591-1599.	0.3	2
285	Addition of butoxycarbonyl group to phenylalanine derived chalcogenide increases the toxic potential: Importance of non-bonding nitrogen interaction. Chemico-Biological Interactions, 2014, 207, 24-25.	4.0	2
286	Crystal structure of 1-{1-[2-(phenylselanyl)phenyl]-1H-1,2,3-triazol-4-yl}cyclohexan-1-ol. Acta Crystallographica Section E: Crystallographic Communications, 2015, 71, o200-o201.	0.5	2
287	Substituent, structural and positional isomerisation alter anti-oxidant activity of organochalcogen compounds in rats' brain preparations. Arabian Journal of Chemistry, 2019, 12, 1268-1276.	4.9	2
288	Frontispiece: Photoinduced, Direct C(sp ²)â^'H Bond Azo Coupling of Imidazoheteroarenes and Imidazoanilines with Aryl Diazonium Salts Catalyzed by Eosinâ€Y. Chemistry - A European Journal, 2020, 26, .	3.3	2

#	Article	IF	CITATIONS
289	Crystal structure of 1-{2-[(2-methoxyphenyl)selanyl]phenyl}-4-phenyl-1H-1,2,3-triazole. Acta Crystallographica Section E: Crystallographic Communications, 2015, 71, o202-o203.	O.5	2
290	A Convenient Synthesis of Phenyl 1-Chloro-1 Alkenyl Chalcogenides by One-Pot Wittig Reaction. Synthesis of Selenolesters. Phosphorus, Sulfur and Silicon and the Related Elements, 2001, 172, 173-179.	1.6	1
291	R,R-(+)-Bis[(3-benzyloxazolan-4-yl)methyl] disulfide. Acta Crystallographica Section E: Structure Reports Online, 2001, 57, o41-o42.	0.2	1
292	Stereoselective Preparation of Conjugated E-Enynes from E-Vinylic Tellurides and Terminal Alkynes via Sonogashira Cross-Coupling ChemInform, 2004, 35, no.	0.0	1
293	Crystal structure of 4-phenyl-1-{2-[(2,4,6-trimethylphenyl)selanyl]phenyl}-1H-1,2,3-triazole. Acta Crystallographica Section E: Crystallographic Communications, 2015, 71, o204-o205.	0.5	1
294	Anti-Staphylococcus aureus Methicillin-Resistant (MRSA) Activity of a Novel 3-Chalcogenyl Indole. Scientia Medica, 2021, 31, e41325.	0.3	1
295	Preparation and Nickel-Catalyzed Coupling Reactions of Divinylic Selenides ChemInform, 2003, 34, no.	0.0	Ο
296	One-Pot Synthesis of New Chiral Sulfides and Selenides Containing Oxazolidines: Catalyst in the Enantioselective Addition of Diethylzinc to Benzaldehyde ChemInform, 2003, 34, no.	0.0	0
297	2,5-Bis-(butyltelluro) Thiophene as a Convenient Precursor for the Synthesis of 2,5-Bis-(acetylenic) Thiophenes ChemInform, 2003, 34, no.	0.0	0
298	Facile and Practical Enantioselective Synthesis of Propargylic Alcohols by Direct Addition of Alkynes to Aldehydes Catalyzed by Chiral Disulfide—Oxazolidine Ligands ChemInform, 2003, 34, no.	0.0	0
299	Palladium(II) Chloride Catalyzes the Cross-Coupling Reaction of 2,5-Bis-(butyltelluro)-furan and 1-Alkynes ChemInform, 2003, 34, no.	0.0	0
300	Sonogashira Cross-Coupling Reaction of Organotellurium Dichlorides with Terminal Alkynes ChemInform, 2003, 34, no.	0.0	0
301	Stereoselective Synthesis of Enynes by Nickel-Catalyzed Cross-Coupling of Divinylic Chalcogenides with Alkynes ChemInform, 2003, 34, no.	0.0	Ο
302	Stereospecific Synthesis of Chalcogenoenynes by Palladium-Catalyzed Cross-Coupling Reaction ChemInform, 2003, 34, no.	0.0	0
303	Hydrotelluration of Aminoalkynes ChemInform, 2003, 34, no.	0.0	Ο
304	Preparation and Reactivity of Phenyltelluroalkylphosphine Oxides. Vinylic Tellurides ChemInform, 2003, 34, no.	0.0	0
305	Synthesis of New Chiral Aliphatic Amino Diselenides and Their Application as Catalysts for the Enantioselective Addition of Diethylzinc to Aldehydes ChemInform, 2003, 34, no.	0.0	0
306	Thioorthoesters in the Activated Pictet—Spengler Cyclization. Synthesis of 1-Thiosubstituted Tetrahydroisoquinolines and Carbon—Carbon Bond Formation via Sulfonyl Iminium Ions Generated from N,S-Sulfonyl Acetals ChemInform, 2003, 34, no.	0.0	0

#	Article	IF	CITATIONS
307	Palladium-Catalyzed Coupling of sp2-Hybridized Tellurides. ChemInform, 2004, 35, no.	0.0	Ο
308	A Convenient Preparation of Chalcogenoenynes from β-Bromovinyl Ketene Chalcogenoacetals ChemInform, 2004, 35, no.	0.0	0
309	Stereospecific Synthesis of Phosphono-(1Z,3E)-dienyl Compounds from β-Phenyltelluro-vinylphosphonates and -vinylphosphine Oxides ChemInform, 2004, 35, no.	0.0	Ο
310	The Facile Synthesis of Chiral Oxazoline Catalysts for the Diethylzinc Addition to Aldehydes ChemInform, 2004, 35, no.	0.0	0
311	Hydroselenation of Alkynes by Lithium Butylselenolate: An Approach in the Synthesis of Vinylic Selenides ChemInform, 2004, 35, no.	0.0	0
312	Stereoselective sp2—sp2 Bond Formation via Negishi Cross-Coupling of Vinylic Tellurides and 2-Heteroarylzinc Chlorides ChemInform, 2004, 35, no.	0.0	0
313	New Aziridine Sulfide Ligands for Palladium-Catalyzed Asymmetric Allylic Alkylation ChemInform, 2004, 35, no.	0.0	Ο
314	Synthetic Approaches to 2-Tetralones. ChemInform, 2004, 35, no.	0.0	0
315	Aziridine Sulfides and Disulfides as Catalysts for the Enantioselective Addition of Diethylzinc to Aldehydes ChemInform, 2005, 36, no.	0.0	Ο
316	A New Cysteine-Derived Ligand as Catalyst for the Addition of Diethylzinc to Aldehydes: The Importance of a "Free―Sulfide Site for Enantioselectivity ChemInform, 2005, 36, no.	0.0	0
317	Catalytic Enantioselective Arylation of Aldehydes: Boronic Acids as a Suitable Source of Transferable Aryl Groups ChemInform, 2005, 36, no.	0.0	Ο
318	New Simple Chiral Phosphine Oxazolidine Ligands: Easy Synthesis and Application in the Palladium-Catalyzed Asymmetric Allylic Alkylation ChemInform, 2005, 36, no.	0.0	0
319	Synthesis of Ketene Phenyl- and Butyltelluroacetals by a Horner—Wittig Route ChemInform, 2005, 36, no.	0.0	Ο
320	Seleno-Imine: A New Class of Versatile, Modular N,Se Ligands for Asymmetric Palladium-Catalyzed Allylic Alkylation ChemInform, 2005, 36, no.	0.0	0
321	1-Substituted β-Carbolines by a Pictet—Spengler Cyclization with Thioortho Esters and Carbon—Carbon Bond Formation via N-Sulfonyl Iminium Ions Generated from N,S-Sulfonyl Acetals ChemInform, 2006, 37, no.	0.0	Ο
322	Stereoselective Mannich-Type Reaction of Chlorotitanium α-Phenylseleno Esters Enolates with Aromatic Aldimines ChemInform, 2006, 37, no.	0.0	0
323	Desulfonylation of Nâ€Sulfonyl Tetrahydroisoquinoline Derivatives by Potassium Fluoride on Alumina under Microwave Irradiation: Selective Synthesis of 3,4â€Dihydroisoquinolines and Isoquinolines ChemInform, 2002, 33, 139-139.	0.0	0
324	Synthesis of βâ€Organotelluro Vinylphosphine Oxides by Hydrotelluration of 1â€Alkynylphosphine Oxides and Their Palladiumâ€Catalyzed Crossâ€Coupling with Alkynes ChemInform, 2002, 33, 172-172.	0.0	0

#	Article	IF	CITATIONS
325	Synthesis of Diselenides or Ditellurides with CuO Nanopowder />. Synfacts, 2010, 2010, 1315-1315.	0.0	0
326	Editorial: III Brazilian meeting on the selenium and tellurium chemistry. Journal of the Brazilian Chemical Society, 2010, 21, I-II.	0.6	0
327	Copper Oxide Nanoparticles-Catalyzed Aziridine Ring Opening with Diaryl Diselenides Under Ionic Liquid as Reaction Medium. , 0, , .		0
328	An Efficient Synthesis of Alkynyl Selenides and Telurides from Terminal Acetylenes and Diorganoyl Dichalcogenides Catalyzed by Copper Oxide Nanopowder. , 0, , .		0
329	Microwave-assisted solvent- and catalyst-free synthesis of allylic thioetheres from allylic alcohols. , 0, , .		0
330	Advances in photochemical seleno-functionalization of (hetero)arenes. , 2022, , 123-145.		0