
Tatsuhiko Sato

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2347909/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Features of Particle and Heavy Ion Transport code System (PHITS) version 3.02. Journal of Nuclear Science and Technology, 2018, 55, 684-690.	0.7	915
2	Particle and Heavy Ion Transport code System, PHITS, version 2.52. Journal of Nuclear Science and Technology, 2013, 50, 913-923.	0.7	700
3	Scaling in situ cosmogenic nuclide production rates using analytical approximations to atmospheric cosmic-ray fluxes. Earth and Planetary Science Letters, 2014, 386, 149-160.	1.8	542
4	PHITS—a particle and heavy ion transport code system. Radiation Measurements, 2006, 41, 1080-1090.	0.7	263
5	Development of PARMA: PHITS-based Analytical Radiation Model in the Atmosphere. Radiation Research, 2008, 170, 244-259.	0.7	191
6	Analytical Functions to Predict Cosmic-Ray Neutron Spectra in the Atmosphere. Radiation Research, 2006, 166, 544-555.	0.7	137
7	Analytical Model for Estimating Terrestrial Cosmic Ray Fluxes Nearly Anytime and Anywhere in the World: Extension of PARMA/EXPACS. PLoS ONE, 2015, 10, e0144679.	1.1	121
8	Benchmark study of the recent version of the PHITS code. Journal of Nuclear Science and Technology, 2017, 54, 617-635.	0.7	115
9	Biological Dose Estimation for Charged-Particle Therapy Using an Improved PHITS Code Coupled with a Microdosimetric Kinetic Model. Radiation Research, 2009, 171, 107-117.	0.7	100
10	Analytical Model for Estimating the Zenith Angle Dependence of Terrestrial Cosmic Ray Fluxes. PLoS ONE, 2016, 11, e0160390.	1.1	86
11	Cell Survival Fraction Estimation Based on the Probability Densities of Domain and Cell Nucleus Specific Energies Using Improved Microdosimetric Kinetic Models. Radiation Research, 2012, 178, 341-356.	0.7	79
12	Development of a calculation method for estimating specific energy distribution in complex radiation fields. Radiation Protection Dosimetry, 2006, 122, 41-45.	0.4	73
13	Fluence-to-dose conversion coefficients for neutrons and protons calculated using the PHITS code and ICRP/ICRU adult reference computational phantoms. Physics in Medicine and Biology, 2009, 54, 1997-2014.	1.6	73
14	The Martian surface radiation environment – a comparison of models and MSL/RAD measurements. Journal of Space Weather and Space Climate, 2016, 6, A13.	1.1	70
15	Validation of the physical and RBE-weighted dose estimator based on PHITS coupled with a microdosimetric kinetic model for proton therapy. Journal of Radiation Research, 2018, 59, 91-99.	0.8	65
16	Extension of TOPAS for the simulation of proton radiation effects considering molecular and cellular endpoints. Physics in Medicine and Biology, 2015, 60, 5053-5070.	1.6	56
17	Transport model comparison studies of intermediate-energy heavy-ion collisions. Progress in Particle and Nuclear Physics, 2022, 125, 103962.	5.6	55
18	Microdosimetric Modeling of Biological Effectiveness for Boron Neutron Capture Therapy Considering Intra- and Intercellular Heterogeneity in 10B Distribution. Scientific Reports, 2018, 8, 988.	1.6	53

#	Article	IF	CITATIONS
19	Measurements of Cosmic-Ray Neutron Energy Spectra from Thermal to 15 MeV with Bonner Ball Neutron Detector in Aircraft. Journal of Nuclear Science and Technology, 2010, 47, 31-39.	0.7	43
20	Overview of particle and heavy ion transport code system PHITS. Annals of Nuclear Energy, 2015, 82, 110-115.	0.9	39
21	Cataractogenesis following high-LET radiation exposure. Mutation Research - Reviews in Mutation Research, 2016, 770, 262-291.	2.4	37
22	Impact of Stellar Superflares on Planetary Habitability. Astrophysical Journal, 2019, 881, 114.	1.6	36
23	Analysis of cell-survival fractions for heavy-ion irradiations based on microdosimetric kinetic model implemented in the particle and heavy ion transport code system. Radiation Protection Dosimetry, 2011, 143, 491-496.	0.4	34
24	Applicability of particle and heavy ion transport code PHITS to the shielding design of spacecrafts. Radiation Measurements, 2006, 41, 1142-1146.	0.7	31
25	The Nebula Winter: The united view of the snowball Earth, mass extinctions, and explosive evolution in the late Neoproterozoic and Cambrian periods. Gondwana Research, 2014, 25, 1153-1163.	3.0	31
26	Modeling of yield estimation for DNA strand breaks based on Monte Carlo simulations of electron track structure in liquid water. Journal of Applied Physics, 2019, 126, .	1.1	31
27	Fluence-to-dose conversion coefficients for heavy ions calculated using the PHITS code and the ICRP/ICRU adult reference computational phantoms. Physics in Medicine and Biology, 2010, 55, 2235-2246.	1.6	30
28	New Features of the Particle and Heavy Ion Transport Code System; PHITS. Progress in Nuclear Science and Technology, 2011, 2, 923-926.	0.3	29
29	Measurement of microdosimetric spectra with a wall-less tissue-equivalent proportional counter for a 290 MeV/u ¹² C beam. Physics in Medicine and Biology, 2010, 55, 5089-5101.	1.6	28
30	Measurement of Response Functions of a Liquid Organic Scintillator for Neutrons up to 800 Me V. Journal of Nuclear Science and Technology, 2006, 43, 714-719.	0.7	27
31	PARaDIM: A PHITS-Based Monte Carlo Tool for Internal Dosimetry with Tetrahedral Mesh Computational Phantoms. Journal of Nuclear Medicine, 2019, 60, 1802-1811.	2.8	27
32	Applications of the microdosimetric function implemented in the macroscopic particle transport simulation code PHITS. International Journal of Radiation Biology, 2012, 88, 143-150.	1.0	26
33	Development of a new microdosimetric biological weighting function for the RBE ₁₀ assessment in case of the V79 cell line exposed to ions from ¹ H to ²³⁸ U. Physics in Medicine and Biology, 2020, 65, 235010.	1.6	26
34	Quasi-monoenergetic neutron energy spectra for 246 and 389MeV 7Li(p,n) reactions at angles from 0° to 30°. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2011, 629, 43-49.	0.7	25
35	Characterization of high-energy quasi-monoenergetic neutron energy spectra and ambient dose equivalents of 80–389 MeV 7Li(p,n) reactions using a time-of-flight method. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2015. 804. 50-58.	0.7	24
36	Estimation of relative biological effectiveness for boron neutron capture therapy using the PHITS code coupled with a microdosimetric kinetic model. Journal of Radiation Research, 2015, 56, 382-390.	0.8	24

#	Article	IF	CITATIONS
37	Air shower simulation for WASAVIES: warning system for aviation exposure to solar energetic particles. Radiation Protection Dosimetry, 2014, 161, 274-278.	0.4	21
38	Radiation dose forecast of WASAVIES during groundâ€level enhancement. Space Weather, 2014, 12, 380-386.	1.3	21
39	Radiation Dose Nowcast for the Ground Level Enhancement on 10–11 September 2017. Space Weather, 2018, 16, 917-923.	1.3	21
40	Cosmic ray modulation and radiation dose of aircrews during the solar cycle 24/25. Space Weather, 2017, 15, 589-605.	1.3	20
41	Real Time and Automatic Analysis Program for WASAVIES: Warning System for Aviation Exposure to Solar Energetic Particles. Space Weather, 2018, 16, 924-936.	1.3	20
42	Individual dosimetry system for targeted alpha therapy based on PHITS coupled with microdosimetric kinetic model. EJNMMI Physics, 2021, 8, 4.	1.3	19
43	Verification of KURBUC-based ion track structure mode for proton and carbon ions in the PHITS code. Physics in Medicine and Biology, 2021, 66, 06NT02.	1.6	19
44	Fluence-to-dose conversion coefficients for aircrew dosimetry based on the new ICRP Recommendations. Progress in Nuclear Science and Technology, 2011, 1, 134-137.	0.3	19
45	Overview of the PHITS code and its application to medical physics. Progress in Nuclear Science and Technology, 2014, 4, 879-882.	0.3	19
46	Dose estimation for astronauts using dose conversion coefficients calculated with the PHITS code and the ICRP/ICRU adult reference computational phantoms. Radiation and Environmental Biophysics, 2011, 50, 115-123.	0.6	18
47	Evaluation of World Population-Weighted Effective Dose due to Cosmic Ray Exposure. Scientific Reports, 2016, 6, 33932.	1.6	18
48	Impact of PHITS spallation models on the neutronics design of an accelerator-driven system. Journal of Nuclear Science and Technology, 2016, 53, 1585-1594.	0.7	18
49	PHITS – benchmark of partial charge-changing cross sections for intermediate-mass systems. Nuclear Instruments & Methods in Physics Research B, 2007, 254, 30-38.	0.6	17
50	Model Assembly for Estimating Cell Surviving Fraction for Both Targeted and Nontargeted Effects Based on Microdosimetric Probability Densities. PLoS ONE, 2014, 9, e114056.	1.1	17
51	COMPARISON OF COSMIC-RAY ENVIRONMENTS ON EARTH, MOON, MARS AND IN SPACECRAFT USING PHITS. Radiation Protection Dosimetry, 2018, 180, 146-149.	0.4	17
52	Dosimetric Impact of a New Computational Voxel Phantom Series for the Japanese Atomic Bomb Survivors: Children and Adults. Radiation Research, 2019, 191, 369.	0.7	17
53	Management of cosmic radiation exposure for aircraft crew in Japan. Radiation Protection Dosimetry, 2011, 146, 123-125.	0.4	16
54	Space Radiation Dosimetry to Evaluate the Effect of Polyethylene Shielding in the Russian Segment of the International Space Station. Physics Procedia, 2015, 80, 25-35.	1.2	16

#	Article	IF	CITATIONS
55	Interplanetary particle transport simulation for warning system for aviation exposure to solar energetic particles. Earth, Planets and Space, 2015, 67, .	0.9	16
56	Improvement of photonuclear reaction model below 140 MeV in the PHITS code. Journal of Nuclear Science and Technology, 2015, 52, 57-62.	0.7	16
57	Implementation of tetrahedral-mesh geometry in Monte Carlo radiation transport code PHITS. Physics in Medicine and Biology, 2017, 62, 4798-4810.	1.6	16
58	Track-structure modes in particle and heavy ion transport code system (PHITS): application to radiobiological research. International Journal of Radiation Biology, 2022, 98, 148-157.	1.0	16
59	Development of Dose Monitoring System Applicable to Various Radiations with Wide Energy Ranges. Journal of Nuclear Science and Technology, 2005, 42, 768-778.	0.7	15
60	Systematic Measurement of Lineal Energy Distributions for Proton, He and Si Ion Beams Over a Wide Energy Range Using a Wall-less Tissue Equivalent Proportional Counter. Journal of Radiation Research, 2012, 53, 264-271.	0.8	15
61	A Simplified Cluster Analysis of Electron Track Structure for Estimating Complex DNA Damage Yields. International Journal of Molecular Sciences, 2020, 21, 1701.	1.8	15
62	Medical application of particle and heavy ion transport code system PHITS. Radiological Physics and Technology, 2021, 14, 215-225.	1.0	15
63	RESPONSES OF SELECTED NEUTRON MONITORS TO COSMIC RADIATION AT AVIATION ALTITUDES. Health Physics, 2009, 96, 655-660.	0.3	14
64	Response Measurement of a Bonner Sphere Spectrometer for High-Energy Neutrons. IEEE Transactions on Nuclear Science, 2012, 59, 161-166.	1.2	14
65	Inter-comparison of Dose Distributions Calculated by FLUKA, GEANT4, MCNP, and PHITS for Proton Therapy. EPJ Web of Conferences, 2017, 153, 04011.	0.1	14
66	Dosimetric Impact of a New Computational Voxel Phantom Series for the Japanese Atomic Bomb Survivors: Pregnant Females. Radiation Research, 2019, 192, 538.	0.7	14
67	Modernization of the DCHAIN-PHITS activation code with new features and updated data libraries. Nuclear Instruments & Methods in Physics Research B, 2020, 484, 29-41.	0.6	14
68	An estimation of Canadian population exposure to cosmic rays. Radiation and Environmental Biophysics, 2009, 48, 317-322.	0.6	13
69	A comparative study of space radiation organ doses and associated cancer risks using PHITS and HZETRN. Physics in Medicine and Biology, 2013, 58, 7183-7207.	1.6	13
70	Neutron Dosimetry in Quasi-Monoenergetic Fields of 244 and 387 MeV. IEEE Transactions on Nuclear Science, 2013, 60, 299-304.	1.2	12
71	DNA damage induction during localized chronic exposure to an insoluble radioactive microparticle. Scientific Reports, 2019, 9, 10365.	1.6	12
72	Intensity Modulated Radiation Fields Induce Protective Effects and Reduce Importance of Dose-Rate Effects. Scientific Reports, 2019, 9, 9483.	1.6	12

#	Article	IF	CITATIONS
73	Space weather benchmarks on Japanese society. Earth, Planets and Space, 2021, 73, .	0.9	12
74	Soft error rate analysis based on multiple sensitive volume model using PHITS. Journal of Nuclear Science and Technology, 2016, 53, 451-458.	0.7	11
75	Analysis of scintillation light intensity by microscopic radiation transport calculation and Förster quenching model. PLoS ONE, 2018, 13, e0202011.	1.1	11
76	Application and Validation of Event Generator in the PHITS Code for the Low-Energy Neutron-Induced Reactions. Progress in Nuclear Science and Technology, 2011, 2, 931-935.	0.3	11
77	Modification of photo-nuclear cascade evaporation code PICA95 at energies below 150 MeV. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1999, 437, 471-480.	0.7	10
78	Development of neutron-monitor detector using liquid organic scintillator coupled with 6Li + ZnS(Ag) Sheet. Radiation Protection Dosimetry, 2004, 110, 255-261.	0.4	10
79	Evaluation of the accuracy of mono-energetic electron and beta-emitting isotope dose-point kernels using particle and heavy ion transport code system: PHITS. Applied Radiation and Isotopes, 2017, 128, 199-203.	0.7	10
80	Implementation of muon interaction models in PHITS. Journal of Nuclear Science and Technology, 2017, 54, 101-110.	0.7	10
81	A biologically based mathematical model for spontaneous and ionizing radiation cataractogenesis. PLoS ONE, 2019, 14, e0221579.	1.1	10
82	Implementation of simplified stochastic microdosimetric kinetic models into PHITS for application to radiation treatment planning. International Journal of Radiation Biology, 2021, 97, 1450-1460.	1.0	10
83	PSTEP: project for solar–terrestrial environment prediction. Earth, Planets and Space, 2021, 73, .	0.9	10
84	Microdosimetric Analysis Confirms Similar Biological Effectiveness of External Exposure to Gamma-Rays and Internal Exposure to 137Cs, 134Cs, and 1311. PLoS ONE, 2014, 9, e99831.	1.1	10
85	Inflammatory Signaling and DNA Damage Responses after Local Exposure to an Insoluble Radioactive Microparticle. Cancers, 2022, 14, 1045.	1.7	10
86	Measurement of the neutron spectrum by the irradiation of a 2.04-GeV electron beam into thick targets. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2001, 463, 299-308.	0.7	9
87	Predicting Radiation Dose on Aircraft From Solar Energetic Particles. Space Weather, 2011, 9, .	1.3	9
88	Transient ionization of the mesosphere during auroral breakup: Arase satellite and ground-based conjugate observations at Syowa Station. Earth, Planets and Space, 2019, 71, .	0.9	9
89	Microdosimetric study for secondary neutrons in phantom produced by a carbon beam. Medical Physics, 2007, 34, 3571-3578.	1.6	8
90	Rational evaluation of the therapeutic effect and dosimetry of auger electrons for radionuclide therapy in a cell culture model. Annals of Nuclear Medicine, 2018, 32, 114-122.	1.2	8

#	Article	IF	CITATIONS
91	Impact of Irradiation Side on Neutron-Induced Single-Event Upsets in 65-nm Bulk SRAMs. IEEE Transactions on Nuclear Science, 2019, 66, 1374-1380.	1.2	8
92	Estimate of economic impact of atmospheric radiation storm associated with solar energetic particle events on aircraft operations. Earth, Planets and Space, 2021, 73, .	0.9	8
93	Characterization of the WENDI-II REM Counter for its Application at MedAustron. Progress in Nuclear Science and Technology, 2011, 2, 258-262.	0.3	8
94	Fluence-to-Dose Conversion Coefficients for Muons and Pions Calculated Based on ICRP Publication 103 Using the PHITS Code. Progress in Nuclear Science and Technology, 2011, 2, 432-436.	0.3	8
95	Simulations of the radiation environment at ISS altitudes. Acta Astronautica, 2009, 65, 279-288.	1.7	7
96	Development of general nuclear resonance fluorescence model. Journal of Nuclear Science and Technology, 2016, 53, 1766-1773.	0.7	7
97	Recent Improvements of Particle and Heavy Ion Transport code System: PHITS. EPJ Web of Conferences, 2017, 153, 06008.	0.1	7
98	Internal doses from radionuclides and their health effects following the Fukushima accident. Journal of Radiological Protection, 2018, 38, 1253-1268.	0.6	7
99	Estimation method of systematic uncertainties in Monte Carlo particle transport simulation based on analysis of variance. Journal of Nuclear Science and Technology, 2019, 56, 345-354.	0.7	7
100	DEPTH DISTRIBUTIONS OF RBE-WEIGHTED DOSE and PHOTON-ISOEFFECTIVE DOSE FOR BORON NEUTRON CAPTURE THERAPY. Radiation Protection Dosimetry, 2019, 183, 247-250.	0.4	7
101	A theoretical cell-killing model to evaluate oxygen enhancement ratios at DNA damage and cell survival endpoints in radiation therapy. Physics in Medicine and Biology, 2020, 65, 095006.	1.6	7
102	Investigation of using a long-life electronic personal dosimeter for monitoring aviation doses of frequent flyers. Radiation Measurements, 2020, 134, 106309.	0.7	7
103	Benchmark study of particle and heavy-ion transport code system using shielding integral benchmark archive and database for accelerator-shielding experiments. Journal of Nuclear Science and Technology, 2022, 59, 665-675.	0.7	7
104	Theoretical and experimental estimation of the relative optically stimulated luminescence efficiency of an optical-fiber-based BaFBr:Eu detector for swift ions. Journal of Nuclear Science and Technology, 2022, 59, 915-924.	0.7	7
105	Explosive volcanic eruptions triggered by cosmic rays: Volcano as a bubble chamber. Gondwana Research, 2011, 19, 1054-1061.	3.0	6
106	Upgrades of DARWIN, a dose and spectrum monitoring system applicable to various types of radiation over wide energy ranges. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2011, 637, 149-157.	0.7	6
107	Ionization of protoplanetary disks by galactic cosmic rays, solar protons, and supernova remnants. Geoscience Frontiers, 2017, 8, 247-252.	4.3	6
108	Nowcast and forecast of galactic cosmic ray (GCR) and solar energetic particle (SEP) fluxes in magnetosphere and ionosphere – Extension of WASAVIES to Earth orbit. Journal of Space Weather and Space Climate, 2019, 9, A9.	1.1	6

#	Article	IF	CITATIONS
109	Probabilistic risk assessment of solar particle events considering the cost of countermeasures to reduce the aviation radiation dose. Scientific Reports, 2021, 11, 17091.	1.6	6
110	Development of Dose Monitoring System Applicable to Various Radiations with Wide Energy Ranges. , 0, .		6
111	Measurement of Response Functions of a Liquid Organic Scintillator for Neutrons up to 800 Me V. , 0,		6
112	Improvements in the particle and heavy-ion transport code system (PHITS) for simulating neutron-response functions and detection efficiencies of a liquid organic scintillator. Journal of Nuclear Science and Technology, 2022, 59, 1047-1060.	0.7	6
113	Microdosimetric Modeling of Relative Biological Effectiveness for Skin Reactions: Possible Linkage Between In Vitro and In Vivo Data. International Journal of Radiation Oncology Biology Physics, 2022, 114, 153-162.	0.4	6
114	Angular distribution measurements of photo-neutron yields produced by 2.0 GeV electrons incident on thick targets. Radiation Protection Dosimetry, 2005, 116, 653-657.	0.4	5
115	Measurement of Atmospheric Neutron and Photon Energy Spectra at Aviation Altitudes using a Phoswich-Type Neutron Detector. Journal of Nuclear Science and Technology, 2010, 47, 932-944.	0.7	5
116	ISSCREM: International Space Station cosmic radiation exposure model. , 2013, , .		5
117	Analysis of linear energy transfers and quality factors of charged particles produced by spontaneous fission neutrons from 252Cf and 244Pu in the human body. Radiation Protection Dosimetry, 2013, 154, 142-147.	0.4	5
118	Cost estimation for alternative aviation plans against potential radiation exposure associated with solar proton events for the airline industry. Evolutionary and Institutional Economics Review, 2020, 17, 487-499.	0.3	5
119	Realâ€time in vivo dosimetry system based on an optical fiberâ€coupled microsized photostimulable phosphor for stereotactic body radiation therapy. Medical Physics, 2020, 47, 5235-5249.	1.6	5
120	Dosimetric Impact of a New Computational Voxel Phantom Series for the Japanese Atomic Bomb Survivors: Methodological Improvements and Organ Dose Response Functions. Radiation Research, 2020, 194, 390-402.	0.7	5
121	Japanese pediatric and adult atomic bomb survivor dosimetry: potential improvements using the J45 phantom series and modern Monte Carlo transport. Radiation and Environmental Biophysics, 2022, 61, 73-86.	0.6	5
122	Measurements of high-energy photonuclear reaction yields in the 2.5 GeV electron beam stop. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1997, 401, 476-490.	0.7	4
123	Systematics of Differential Photoneutron Yields Produced from Al, Ti, Cu, Sn, W, and Pb Targets by Irradiation of 2.04 GeV Electrons. Journal of Nuclear Science and Technology, 2002, 39, 1228-1231.	0.7	4
124	Study on Response Function of Organic Liquid Scintillator for High-Energy Neutrons. AIP Conference Proceedings, 2005, , .	0.3	4
125	Impact of Hydrided and Non-Hydrided Materials Near Transistors on Neutron-Induced Single Event Upsets. , 2020, , .		4
126	Oxygen enhancement ratios of cancer cells after exposure to intensity modulated x-ray fields: DNA damage and cell survival. Physics in Medicine and Biology, 2021, 66, 075014.	1.6	4

#	Article	IF	CITATIONS
127	New approach for describing nuclear reactions based on intra-nuclear cascade coupled with DWBA. Progress in Nuclear Science and Technology, 2014, 4, 418-421.	0.3	4
128	Response measurement of various neutron dose equivalent monitors in 134-387 MeV neutron fields. Progress in Nuclear Science and Technology, 2014, 4, 704-708.	0.3	4
129	Measurements of Cosmic-Ray Neutron Energy Spectra from Thermal to 15 MeV with Bonner Ball Neutron Detector in Aircraft. Journal of Nuclear Science and Technology, 2010, 47, 31-39.	0.7	4
130	Darwin: dose monitoring system applicable to various radiations with wide energy ranges. Radiation Protection Dosimetry, 2007, 126, 501-505.	0.4	3
131	Radial dependence of lineal energy distribution of 290-MeV/u carbon and 500-MeV/u iron ion beams using a wall-less tissue-equivalent proportional counter. Journal of Radiation Research, 2015, 56, 197-204.	0.8	3
132	Review of the Microdosimetric Studies for High-Energy Charged Particle Beams Using a Tissue-Equivalent Proportional Counter. , 2016, , .		3
133	Evaluation of RBE-weighted doses for various radiotherapy beams based on a microdosimetric function implemented in PHITS. Journal of Physics: Conference Series, 2020, 1662, 012004.	0.3	3
134	208,207,206,natPb(p,x)207Bi and 209Bi (p,x)207Bi excitation functions in the energy range of 0.04 - 2.6 GeV. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2020, 984, 164635.	0.7	3
135	Neutron Dose Rate Measurements in J-PARC MLF. Progress in Nuclear Science and Technology, 2012, 3, 76-78.	0.3	3
136	Comparison of fluence-to-dose conversion coefficients for deuterons, tritons and helions. Radiation Protection Dosimetry, 2012, 148, 344-351.	0.4	2
137	Method for the prediction of the effective dose equivalent to the crew of the International Space Station. Advances in Space Research, 2014, 53, 810-817.	1.2	2
138	Shielding effect on secondary cosmic-ray neutron- and muon-induced soft errors. , 2016, , .		2
139	Technical Note: validation of a material assignment method for a retrospective study of carbon-ion radiotherapy using Monte Carlo simulation. Journal of Radiation Research, 2021, 62, 846-855.	0.8	2
140	Experimental Method for Neutron Elastic Scattering Cross-Section Measurement in Intermediate Energy Region at RCNP. Progress in Nuclear Science and Technology, 2011, 1, 20-23.	0.3	2
141	Development of the DICOM-based Monte Carlo dose reconstruction system for a retrospective study on the secondary cancer risk in carbon ion radiotherapy. Physics in Medicine and Biology, 2022, 67, 145002.	1.6	2
142	PARMA: PHITS-based Analytical Radiation Model in the Atmosphere—Verification of Its Accuracy in Estimating Cosmic Radiation Doses. AIP Conference Proceedings, 2008, , .	0.3	1
143	Calculation of energy-deposition distributions and microdosimetric estimation of the biological effect of a 9C beam. Radiation and Environmental Biophysics, 2009, 48, 135-143.	0.6	1
144	The Recent Improvement and Verification of DARWIN: Development of a New DAQ System and Results of Flight Experiment. Nuclear Technology, 2009, 168, 113-117.	0.7	1

#	Article	IF	CITATIONS
145	Impact of the introduction of ICRP Publication 103 on neutron dosimetry. Radiation Protection Dosimetry, 2011, 146, 183-185.	0.4	1
146	Analysis of angular distribution of fragments in relativistic heavy-ion collisions by quantum molecular dynamics. EPJ Web of Conferences, 2016, 117, 03011.	0.1	1
147	Applicability of the two-angle differential method to response measurement of neutron-sensitive devices at the RCNP high-energy neutron facility. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2017, 849, 94-101.	0.7	1
148	Experimental analysis of neutron and background gamma-ray energy spectra of 80-400 MeV 7Li(p,n) reactions under the quasi-monoenergetic neutron field at RCNP, Osaka University. EPJ Web of Conferences, 2017, 153, 08019.	0.1	1
149	Correction Notice to: Nowcast and forecast of galactic cosmic ray (GCR) and solar energetic particle (SEP) fluxes in magnetosphere and ionosphere – Extension of WASAVIES to Earth orbit. Journal of Space Weather and Space Climate, 2019, 9, A10.	1.1	1
150	Measurement of Atmospheric Neutron and Photon Energy Spectra at Aviation Altitudes using a Phoswich-Type Neutron Detector. Journal of Nuclear Science and Technology, 2010, 47, 932-944.	0.7	1
151	13 Dose Heterogeneity from a Viewpoint of Microdosimetry. Radioisotopes, 2017, 66, 507-512.	0.1	1
152	Calculation of energy-deposition distributions of a ⁹ C beam using the PHITS code. Journal of Physics: Conference Series, 2007, 74, 021011.	0.3	0
153	Response measurement of a Bonner sphere spectrometer for high-energy neutrons. , 2010, , .		0
154	Application of JAERI quantum molecular dynamics model for collisions of heavy nuclei. EPJ Web of Conferences, 2016, 122, 04005.	0.1	0
155	Feasibility study of nuclear transmutation by negative muon capture reaction using the PHITS code. EPJ Web of Conferences, 2016, 122, 04002.	0.1	Ο
156	Dose Measurements through the Concrete and Iron Shields under the 100 to 400 MeV Quasi-Monoenergetic Neutron Field (at RCNP, Osaka Univ.). EPJ Web of Conferences, 2017, 153, 08022.	0.1	0
157	New Scope covered by PHITS―Particle and Heavy Ion Transport Code System. Nippon Genshiryoku Gakkaishi/Journal of the Atomic Energy Society of Japan, 2006, 48, 949-954.	0.0	Ο
158	Present Status and Research Subject of Medical Facility Design and Irradiation Field Dose Evaluation with Monte Carlo Method. Atomos, 2007, 49, 750-754.	0.0	0
159	Development of Cosmic Radiation and Energetic Particle Analyzing System: CREPAS. Progress in Nuclear Science and Technology, 2011, 1, 356-359.	0.3	Ο
160	Application of new nuclear de-excitation model of PHITS for prediction of isomer yield and prompt gamma-ray production. , 2014, , .		0
161	Overview of Particle and Heavy Ion Transport Code System PHITS. , 2014, , .		0
162	Application of General-Purpose Radiation Transport Code into Study for Laser-Produced Plasma Ions Acceleration. The Review of Laser Engineering, 2014, 42, 163.	0.0	0

#	Article	IF	CITATIONS
163	Establishment of a Novel Detection System for Measuring Primary Knock-on Atoms. , 2017, , .		0
164	Cutting-edge studies on Nuclear Data for Continuous and Emerging Need (7). Atomos, 2018, 60, 294-298.	0.0	0
165	Total cross section model with uncertainty evaluated by KALMAN. EPJ Web of Conferences, 2020, 239, 03015.	0.1	Ο
166	Track Structure and Microdosimetry of Proton Beams. , 2020, , 61-72.		0
167	Rationale for Translational Research on Targeted Alpha Therapy in Japan —Renaissance of Radiopharmaceuticals Utilizing Astatine-211 and Actinium-225—. Radioisotopes, 2020, 69, 329-340.	0.1	0