
M Solache-RÃ-os

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2347459/publications.pdf Version: 2024-02-01

M SOLACHE-RÃOS

#	Article	IF	CITATIONS
1	Sorption behavior of fluoride ions from aqueous solutions by hydroxyapatite. Journal of Hazardous Materials, 2010, 180, 297-302.	12.4	136
2	Sorption of indigo carmine by a Fe-zeolitic tuff and carbonaceous material from pyrolyzed sewage sludge. Journal of Hazardous Materials, 2009, 170, 1227-1235.	12.4	82
3	Evaluation of Natural and Surfactant-Modified Zeolites in the Removal of Cadmium from Aqueous Solutions. Separation Science and Technology, 2004, 39, 2711-2730.	2.5	68
4	Radioactive waste treatments by using zeolites. A short review. Journal of Environmental Radioactivity, 2021, 233, 106610.	1.7	67
5	Adsorption Behaviour of La(III) and Eu(III) Ions from Aqueous Solutions by Hydroxyapatite: Kinetic, Isotherm, and Thermodynamic Studies. Journal of Chemistry, 2013, 2013, 1-9.	1.9	60
6	Comparison of aluminum modified natural materials in the removal of fluoride ions. Journal of Colloid and Interface Science, 2014, 418, 254-260.	9.4	55
7	Adsorption of cadmium by Na and Fe modified zeolitic tuffs and carbonaceous material from pyrolyzed sewage sludge. Journal of Environmental Management, 2012, 97, 6-13.	7.8	53
8	Removal of fluoride ions from drinking water and fluoride solutions by aluminum modified iron oxides in a column system. Journal of Colloid and Interface Science, 2013, 407, 410-415.	9.4	52
9	WATER DEFLUORIDATION BY MEXICAN HEULANDITE–CLINOPTILOLITE. Separation Science and Technology, 2002, 37, 3109-3128.	2.5	51
10	Aluminum and lanthanum effects in natural materials on the adsorption of fluoride ions. Journal of Fluorine Chemistry, 2013, 148, 6-13.	1.7	47
11	Significance of FeZr-modified natural zeolite networks on fluoride removal. Journal of Fluorine Chemistry, 2017, 202, 41-53.	1.7	41
12	Drinking water characterization and removal of manganese. Removal of manganese from water. Journal of Environmental Chemical Engineering, 2018, 6, 2119-2125.	6.7	41
13	Fluoride Removal from Aqueous Solutions by Boehmite. Water, Air, and Soil Pollution, 2012, 223, 1073-1078.	2.4	40
14	As(V) sorption by different natural zeolite frameworks modified with Fe, Zr and FeZr. Microporous and Mesoporous Materials, 2019, 273, 133-141.	4.4	40
15	Characterization and Improvement of Ion Exchange Capacities of Mexican Clinoptilolite-rich Tuffs. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2005, 51, 231-240.	1.6	35
16	Sorption and Desorption of Dye Remazol Yellow onto a Mexican Surfactant-modified Clinoptilolite-rich Tuff and a Carbonaceous Material from Pyrolysis of Sewage Sludge. Water, Air, and Soil Pollution, 2007, 187, 303-313.	2.4	34
17	Removal of Brilliant Blue FCF from Aqueous Solutions Using an Unmodified and Iron-Modified Bentonite and the Thermodynamic Parameters of the Process. Water, Air, and Soil Pollution, 2013, 224, 1.	2.4	34
18	UO 2 2+ sorption on bentonite. Journal of Radioanalytical and Nuclear Chemistry, 1997, 218, 65-69.	1.5	33

M Solache-RÃos

#	Article	IF	CITATIONS
19	Modified natural magnetite with Al and La ions for the adsorption of fluoride ions from aqueous solutions. Journal of Fluorine Chemistry, 2016, 186, 115-124.	1.7	33
20	Modification Effects of Hematite with Aluminum Hydroxide on the Removal of Fluoride Ions from Water. Water, Air, and Soil Pollution, 2012, 223, 319-327.	2.4	32
21	The influence of chemical and thermal treatments on the fluoride removal from water by three mineral structures and their characterization. Journal of Fluorine Chemistry, 2018, 213, 42-50.	1.7	31
22	Tartrazine removal by ZnO nanoparticles and a zeolite-ZnO nanoparticles composite and the phytotoxicity of ZnO nanoparticles. Microporous and Mesoporous Materials, 2020, 302, 110212.	4.4	31
23	The corrosive nature of manganese in drinking water. Science of the Total Environment, 2013, 447, 10-16.	8.0	30
24	Kinetic and Equilibrium Sorption Studies of Ceftriaxone and Paracetamol by Surfactant-Modified Zeolite. Water, Air, and Soil Pollution, 2018, 229, 1.	2.4	27
25	Influence of Na+, Ca2+, Mg2+and NH4+ on the sorption behavior of Cd2+ from aqueous solutions by a Mexican zeolitic material. Hydrometallurgy, 2009, 97, 46-52.	4.3	26
26	Comparison of Cd–Pb adsorption on commercial activated carbon and carbonaceous material from pyrolysed sewage sludge in column system. Environmental Technology (United Kingdom), 2009, 30, 455-461.	2.2	25
27	Textile Wastewater Treatment Using Iron-Modified Clay and Copper-Modified Carbon in Batch and Column Systems. Water, Air, and Soil Pollution, 2016, 227, 1.	2.4	25
28	Lead sorption by a Mexican, clinoptilolite-rich tuff. Environmental Science and Pollution Research, 2007, 14, 397-403.	5.3	23
29	Adsorption of phenol onto surfactants modified bentonite. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2012, 74, 67-75.	1.6	23
30	Fluoride Removal from Aqueous Solutions by a Carbonaceous Material from Pyrolysis of Sewage Sludge. Water, Air, and Soil Pollution, 2012, 223, 1959-1971.	2.4	22
31	Fluoride Ions Behavior in the Presence of Corrosion Products of Iron: Effects of Other Anions. Separation Science and Technology, 2011, 46, 1443-1449.	2.5	20
32	Adsorption-regeneration by heterogeneous Fenton process using modified carbon and clay materials for removal of indigo blue. Environmental Technology (United Kingdom), 2016, 37, 1843-1856.	2.2	18
33	Malachite green dye behaviors in the presence of biosorbents from maize (Zea mays L.), their Fe-Cu nanoparticles composites and Fe-Cu nanoparticles Journal of Environmental Chemical Engineering, 2016, 4, 1594-1603.	6.7	17
34	Comparison of the removal behavior of fluoride by Fe3+ modified geomaterials from water. Applied Clay Science, 2019, 173, 19-28.	5.2	17
35	Fluoride Sorption from Aqueous Solutions and Drinking Water by Magnesium, Cobalt, and Nickel Hydrotalcite-Like Compounds in Batch and Column Systems. Separation Science and Technology, 2010, 45, 786-793.	2.5	15
36	Removal of remazol yellow from aqueous solutions by unmodified and stabilized iron modified clay. Applied Clay Science, 2013, 80-81, 219-225.	5.2	15

M Solache-RÃos

#	Article	IF	CITATIONS
37	Phenol sorption on surfactant-modified Mexican zeolitic-rich tuff in batch and continuous systems. Journal of Hazardous Materials, 2009, 167, 1063-1069.	12.4	13
38	Removal Behavior of Cobalt from Aqueous Solutions by a Sodium-Modified Zeolitic Tuff. Water, Air, and Soil Pollution, 2015, 226, 1.	2.4	13
39	Removal of Indigo Carmine by a Ni Nanoscale Oxides/ <i>Schoenoplectus acutus</i> Composite in Batch and Fixed Bed Column Systems. Separation Science and Technology, 2015, 50, 1602-1610.	2.5	13
40	Adsorption of cobalt by using inorganic components of sediment samples from water bodies. International Journal of Sediment Research, 2021, 36, 524-531.	3.5	13
41	Sorption and Desorption of Red 5 and Yellow 6 by a Fe-Zeolitic Tuff. Water, Air, and Soil Pollution, 2012, 223, 4959-4968.	2.4	11
42	Sorption Behavior of Brilliant Blue FCF by a Fe-Zeolitic Tuff. Water, Air, and Soil Pollution, 2012, 223, 467-475.	2.4	11
43	Behavior of Fluoride Removal by Aluminum Modified Zeolitic Tuff and Hematite in Column Systems and the Thermodynamic Parameters of the Process. Water, Air, and Soil Pollution, 2015, 226, 1.	2.4	11
44	Comparison of Fe–Al-modified natural materials by an electrochemical method and chemical precipitation for the adsorption of F ^Ⲓ and As(V). Environmental Technology (United) Tj ETQq0 0 () rg ₿∏ ⊉Ove	erlo ak 10 Tf 50
45	Treatment of Indigo-Dyed Textile Wastewater Using Solar Photo-Fenton with Iron-Modified Clay and Copper-Modified Carbon. Water, Air, and Soil Pollution, 2017, 228, 1.	2.4	11
46	Removal of Denim Blue from Aqueous Solutions by Inorganic Adsorbents in a Fixed-Bed Column. Water, Air, and Soil Pollution, 2012, 223, 5505-5513.	2.4	10
47	Chemical behavior of cobalt and cesium in the presence of inorganic components of a semiarid soil using water of nuclear purity. Chemical Engineering Research and Design, 2016, 102, 288-293.	5.6	9
48	Sorption of 17α-Ethinylestradiol by Surfactant-Modified Zeolite-Rich Tuff from Aqueous Solutions. Water, Air, and Soil Pollution, 2016, 227, 1.	2.4	9
49	Removal of fluoride from well water by modified iron oxides in a column system. Desalination and Water Treatment, 2016, 57, 2125-2133.	1.0	9
50	Experimental study of the adsorption of fluoride by modified magnetite using a continuous flow system and numerical simulation. Chemical Engineering Research and Design, 2017, 109, 130-139.	5.6	9
51	Aluminum and calcium effects on the adsorption of fluoride ions by corrosion products. Journal of Fluorine Chemistry, 2013, 145, 136-140.	1.7	8
52	Chemical Behavior of Lanthanum in the Presence of Soils Components: Adsorption and Humate Complexes. Water, Air, and Soil Pollution, 2014, 225, 1.	2.4	8
53	Comparison of Cadmium Adsorption by Inorganic Adsorbents in Column Systems. Water, Air, and Soil Pollution, 2014, 225, 1.	2.4	8
54	Competing Effects of Chloride, Nitrate, and Sulfate Ions on the Removal of Fluoride by a Modified Zeolitic Tuff. Water, Air, and Soil Pollution, 2015, 226, 1.	2.4	8

M Solache-RÃos

#	Article	IF	CITATIONS
55	Nobel Materials (ZnO Nanoparticles and ZnO Nanoparticles Supported on a Zeolite) for the Removal of Tartrazine from Aqueous Solutions. Water, Air, and Soil Pollution, 2019, 230, 1.	2.4	7
56	Photolysis and heterogeneous solar photo-Fenton for slaughterhouse wastewater treatment using an electrochemically modified zeolite as catalyst. Separation Science and Technology, 2022, 57, 822-841.	2.5	7
57	The influence of pH on the stability constants of lanthanum and europium complexes with humic acids. Journal of Radioanalytical and Nuclear Chemistry, 2012, 293, 273-278.	1.5	6
58	Characterization of natural zeolite clinoptilolite for sorption of contaminants. Hyperfine Interactions, 2015, 232, 7-18.	0.5	6
59	Behaviour of cerium(III) in the presence of components of soils and its humate complex. Environmental Technology (United Kingdom), 2020, 42, 1-9.	2.2	6
60	Behaviour of Europium (III) and its Hydroxo and Carbonate Complexes in a Solvent Extraction System with HDBM in 2M NaCl at 303 K. Radiochimica Acta, 1999, 87, 125-134.	1.2	5
61	Influence of the pH on Distribution of Denim Blue in Water Fe-Zeolitic Tuff System. Separation Science and Technology, 2012, 47, 723-728.	2.5	5
62	Adsorption of U(IV) by several geomaterials: kinetic, adsorbent dosage and thermodynamic. Journal of Radioanalytical and Nuclear Chemistry, 2018, 317, 269-276.	1.5	5
63	Enhanced decolorization of dyes by an iron modified clay and thermodynamic parameters. Water Science and Technology, 2016, 73, 2007-2016.	2.5	4
64	Comparison of different modified aluminosilicate networks for the removal of diclofenac. Desalination and Water Treatment, 2016, 57, 26401-26413.	1.0	4
65	Radiotracer techniques (18 F) and modeling of fluoride sorption on alumina. Journal of Fluorine Chemistry, 2017, 199, 113-118.	1.7	4
66	Kinetic and Thermodynamic Behavior on the Sorption of Clindamycin from an Aqueous Medium by Modified Surface Zeolitic Tuffs. Water, Air, and Soil Pollution, 2018, 229, 1.	2.4	4
67	Effect of alginate on the removal of yellow 6 by a biopolymer-ferric zeolite composite. Separation and Purification Technology, 2022, 292, 120971.	7.9	4
68	Chemical oxygen demand, total organic carbon and colour reduction in slaughterhouse wastewater by unmodified and iron-modified clinoptilolite-rich tuff. Environmental Technology (United Kingdom), 2014, 35, 1541-1548.	2.2	3
69	Removal of red 2 and yellow 6 by Zn- and-Na modified zeolitic tuffs in the presence of H2O2. Desalination and Water Treatment, 2016, 57, 16626-16632.	1.0	3
70	Alginate-iron modified zeolite beads biocomposite for removal of azo dye from water medium. MRS Advances, 2018, 3, 3769-3773.	0.9	3
71	Adsorption of 177Lu from Water by Using Synthetic Hydroxyapatite. Water, Air, and Soil Pollution, 2021, 232, 1.	2.4	3
72	Sorption of Fluoride Ions by Hydroxyapatite in a Column System. Water, Air, and Soil Pollution, 2013, 224, 1.	2.4	2

#	Article	IF	CITATIONS
73	Chemical Behavior of U(VI) in the Presence of Soil Components. Water, Air, and Soil Pollution, 2018, 229, 1.	2.4	2
74	Physicochemical Behavior of Uranium and Lanthanum in the Presence of Abies religiosa Leaf Biomass. Water, Air, and Soil Pollution, 2020, 231, 1.	2.4	2
75	Removal of ¹⁴² Pr from nuclear purity water using hydroxyapatite. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2022, 57, 567-574.	1.7	2
76	Degradation of Brilliant Blue by Heterogeneous Fenton and UV-Fenton Processes. Water, Air, and Soil Pollution, 2022, 233, .	2.4	2
77	Isotope exchange and separation factor of238U/235U for the system U(III)/U(IV) in aqueous/organic phases. Journal of Radioanalytical and Nuclear Chemistry, 1995, 199, 499-505.	1.5	1
78	Selectivity of the Cd2+/Ca2+ exchange on modified rice hull silica. Environmental Technology (United) Tj ETQq0	0 0 rgBT /	Overlock 10 T

79	Behavior of Fluoride Ions in the Presence of Lanthanum and Magnesium Modified Corrosion Products. Separation Science and Technology, 2015, 50, 1461-1468.	2.5	1
80	Adsorption behaviour of copper onto a novel modified chitosan material: thermodynamic study. Desalination and Water Treatment, 2016, 57, 25080-25088.	1.0	1
81	Estimation and impact of carbon dioxide capture on drinking water: Tillmans equilibrium diagram. Journal of Water and Climate Change, 2020, 11, 380-389.	2.9	1