Hui Peng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2347377/publications.pdf

Version: 2024-02-01

		933447	1058476	
14	539	10	14	
papers	citations	h-index	g-index	
15	15	15	488	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	CITATIONS
1	Utility of the DHFR-based destabilizing domain across mouse models of retinal degeneration and aging. IScience, 2022, 25, 104206.	4.1	1
2	Targeting BCAT1 Combined with \hat{l}_{\pm} -Ketoglutarate Triggers Metabolic Synthetic Lethality in Glioblastoma. Cancer Research, 2022, 82, 2388-2402.	0.9	16
3	Multifaceted role of branched-chain amino acid metabolism in cancer. Oncogene, 2020, 39, 6747-6756.	5.9	102
4	Simultaneous Control of Endogenous and User-Defined Genetic Pathways Using Unique ecDHFR Pharmacological Chaperones. Cell Chemical Biology, 2020, 27, 622-634.e6.	5.2	11
5	Prospective Application of Activity-Based Proteomic Profiling in Vision Research-Potential Unique Insights into Ocular Protease Biology and Pathology. International Journal of Molecular Sciences, 2019, 20, 3855.	4.1	2
6	Non-antibiotic Small-Molecule Regulation of DHFR-Based Destabilizing Domains InÂVivo. Molecular Therapy - Methods and Clinical Development, 2019, 15, 27-39.	4.1	13
7	Small Molecule-Based Inducible Gene Therapies for Retinal Degeneration. Advances in Experimental Medicine and Biology, 2019, 1185, 65-69.	1.6	7
8	Hydrogen Sulfide Sensing through Reactive Sulfur Species (RSS) and Nitroxyl (HNO) in <i>Enterococcus faecalis</i> . ACS Chemical Biology, 2018, 13, 1610-1620.	3.4	37
9	Thioredoxin Profiling of Multiple Thioredoxin-Like Proteins in Staphylococcus aureus. Frontiers in Microbiology, 2018, 9, 2385.	3.5	20
10	Hydrogen Sulfide and Reactive Sulfur Species Impact Proteome <i>S</i> SSulfhydration and Global Virulence Regulation in <i>Staphylococcus aureus</i> Staphylococcus aureus	3.8	73
11	Sulfide Homeostasis and Nitroxyl Intersect via Formation of Reactive Sulfur Species in Staphylococcus aureus. MSphere, 2017, 2, .	2.9	71
12	<i>Staphylococcus aureus sqr</i> Encodes a Type II Sulfide:Quinone Oxidoreductase and Impacts Reactive Sulfur Speciation in Cells. Biochemistry, 2016, 55, 6524-6534.	2.5	48
13	Conformational Analysis and Chemical Reactivity of the Multidomain Sulfurtransferase, <i>Staphylococcus aureus</i> CstA. Biochemistry, 2015, 54, 2385-2398.	2.5	36
14	The <scp>CsoR</scp> â€like sulfurtransferase repressor (<scp>CstR</scp>) is a persulfide sensor in <scp><i>S</i></scp> <i>taphylococcus aureus</i>	2.5	102