Cristina SantÃ-n

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2347219/publications.pdf

Version: 2024-02-01

214721 201575 3,173 46 27 47 citations h-index g-index papers 59 59 59 3753 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Wildland fire ash: Production, composition and eco-hydro-geomorphic effects. Earth-Science Reviews, 2014, 130, 103-127.	4.0	434
2	Global trends in wildfire and its impacts: perceptions versus realities in a changing world. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150345.	1.8	383
3	Towards a global assessment of pyrogenic carbon from vegetation fires. Global Change Biology, 2016, 22, 76-91.	4.2	256
4	Pyrogenic organic matter production from wildfires: a missing sink in the global carbon cycle. Global Change Biology, 2015, 21, 1621-1633.	4.2	214
5	Global and Regional Trends and Drivers of Fire Under Climate Change. Reviews of Geophysics, 2022, 60,	9.0	182
6	Fire effects on soils: the human dimension. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150171.	1.8	166
7	Global fire emissions buffered by the production of pyrogenic carbon. Nature Geoscience, 2019, 12, 742-747.	5.4	140
8	Characterizing humic substances from estuarine soils and sediments by excitation-emission matrix spectroscopy and parallel factor analysis. Biogeochemistry, 2009, 96, 131-147.	1.7	133
9	Carbon sequestration potential and physicochemical properties differ between wildfire charcoals and slow-pyrolysis biochars. Scientific Reports, 2017, 7, 11233.	1.6	93
10	Forest floor chemical transformations in a boreal forest fire and their correlations with temperature and heating duration. Geoderma, 2016, 264, 71-80.	2.3	84
11	Prescribed fire and its impacts on ecosystem services in the UK. Science of the Total Environment, 2018, 624, 691-703.	3.9	71
12	Fires prime terrestrial organic carbon for riverine export to the global oceans. Nature Communications, 2020, 11, 2791.	5.8	71
13	Quantity, composition and water contamination potential of ash produced under different wildfire severities. Environmental Research, 2015, 142, 297-308.	3.7	69
14	Assessing water contamination risk from vegetation fires: Challenges, opportunities and a framework for progress. Hydrological Processes, 2018, 32, 687-694.	1.1	60
15	Saltmarsh soil evolution after land reclamation in Atlantic estuaries (Bay of Biscay, North coast of) Tj ETQq1 1 0.7	784314 rg	BT_lOverlock
16	Consumption of residual pyrogenic carbon by wildfire. International Journal of Wildland Fire, 2013, 22, 1072.	1.0	52
17	The black carbon cycle and its role in the Earth system. Nature Reviews Earth & Environment, 2022, 3, 516-532.	12.2	52
18	Carbon loads, forms and sequestration potential within ash deposits produced by wildfire: new insights from the 2009 †Black Saturday†fires, Australia. European Journal of Forest Research, 2012, 131, 1245-1253.	1.1	51

#	Article	IF	Citations
19	Scientists' warning on extreme wildfire risks to water supply. Hydrological Processes, 2021, 35, e14086.	1.1	51
20	Wildfires influence on soil organic matter in an Atlantic mountainous region (NW of Spain). Catena, 2008, 74, 286-295.	2.2	47
21	The nitrogen budget of laboratory-simulated western US wildfires during the FIREX 2016 Fire Lab study. Atmospheric Chemistry and Physics, 2020, 20, 8807-8826.	1.9	45
22	Chemical composition of wildfire ash produced in contrasting ecosystems and its toxicity to Daphnia magna. International Journal of Wildland Fire, 2019, 28, 726.	1.0	44
23	Living on a flammable planet: interdisciplinary, cross-scalar and varied cultural lessons, prospects and challenges. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150469.	1.8	39
24	Impact of a moderate/high-severity prescribed eucalypt forest fire on soil phosphorous stocks and partitioning. Science of the Total Environment, 2018, 621, 1103-1114.	3.9	39
25	Characterization of humic substances in salt marsh soils under sea rush (Juncus maritimus). Estuarine, Coastal and Shelf Science, 2008, 79, 541-548.	0.9	38
26	Effects of reclamation and regeneration processes on organic matter from estuarine soils and sediments. Organic Geochemistry, 2009, 40, 931-941.	0.9	38
27	Fire as a Removal Mechanism of Pyrogenic Carbon From the Environment: Effects of Fire and Pyrogenic Carbon Characteristics. Frontiers in Earth Science, 2018, 6, .	0.8	36
28	Environmentally persistent free radicals are ubiquitous in wildfire charcoals and remain stable for years. Communications Earth & Environment, 2021, 2, .	2.6	29
29	What Can Charcoal Reflectance Tell Us About Energy Release in Wildfires and the Properties of Pyrogenic Carbon?. Frontiers in Earth Science, 2018, 6, .	0.8	25
30	A global synthesis of fire effects on ecosystem services of forests and woodlands. Frontiers in Ecology and the Environment, 2022, 20, 170-178.	1.9	25
31	The Relevance of Pyrogenic Carbon for Carbon Budgets From Fires: Insights From the FIREX Experiment. Global Biogeochemical Cycles, 2020, 34, e2020GB006647.	1.9	16
32	Designing tools to predict and mitigate impacts on water quality following the Australian 2019/2020 wildfires: Insights from Sydney's largest water supply catchment. Integrated Environmental Assessment and Management, 2021, 17, 1151-1161.	1.6	16
33	Boreal forest soil carbon fluxes one year after a wildfire: Effects of burn severity and management. Global Change Biology, 2021, 27, 4181-4195.	4.2	16
34	Humic substances in estuarine soils colonized by Spartina maritima. Estuarine, Coastal and Shelf Science, 2009, 81, 481-490.	0.9	12
35	Nutrient and oxygenation conditions in transitional and coastal waters: Proposing metrics for status assessment. Ecological Indicators, 2010, 10, 1184-1192.	2.6	11
36	Modelling and quantifying the spatial distribution of post-wildfire ash loads. International Journal of Wildland Fire, 2016, 25, 249.	1.0	9

#	Article	IF	CITATIONS
37	Editorial: From Fires to Oceans: Dynamics of Fire-Derived Organic Matter in Terrestrial and Aquatic Ecosystems. Frontiers in Earth Science, 2019, 7, .	0.8	9
38	Variations of organic carbon stock in reclaimed estuarine soils (Villaviciosa estuary, NW Spain). Science of the Total Environment, 2007, 378, 138-142.	3.9	8
39	Key drivers of pyrogenic carbon redistribution during a simulated rainfall event. Biogeosciences, 2021, 18, 1105-1126.	1.3	8
40	Wildfire-Derived Pyrogenic Carbon Modulates Riverine Organic Matter and Biofilm Enzyme Activities in an In Situ Flume Experiment. ACS ES&T Water, 2021, 1, 1648-1656.	2.3	8
41	Response of Calamagrostis angustifolia to burn frequency and seasonality in the Sanjiang Plain wetlands (Northeast China). Journal of Environmental Management, 2021, 300, 113759.	3.8	8
42	Wildland fire ash enhances short-term CO2 flux from soil in a Southern African savannah. Soil Biology and Biochemistry, 2021, 160, 108334.	4.2	7
43	Statement of Contribution to Diversity, Equity, and Inclusion for <i>JGR: Biogeosciences</i> . Journal of Geophysical Research G: Biogeosciences, 2022, 127, .	1.3	5
44	Pyrogenic organic matter produced during wildfires can act as a carbon sink – a reply to Billings & amp; Schlesinger (2015). Global Change Biology, 2018, 24, e399.	4.2	2
45	No evidence of suitability of prophylactic fluids for wildfire prevention at landscape scales. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 5103-5104.	3.3	2
46	Automatic Delineation of Forest Patches in Highly Fragmented Landscapes Using Coloured Point Clouds. Forests, 2020, 11, 198.	0.9	2