List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2347123/publications.pdf Version: 2024-02-01

Hun Cuo

#	Article	IF	CITATIONS
1	Dynamics in Heterogeneous and Single-Site Catalysis. , 2024, , 649-657.		0
2	Collisionâ€induced spinâ€orbit relaxation of highly vibrationally excited NO near 1 K. Natural Sciences, 2022, 2, e20210074.	1.0	5
3	Influence of supercell size on Gas-Surface Scattering: A case study of CO scattering from Au(1 1 1). Chemical Physics, 2022, 554, 111423.	0.9	11
4	Reaction Pathway Control via Reactant Vibrational Excitation and Impact on Product Vibrational Distributions: The O + HO ₂ → OH + O ₂ Atmospheric Reaction. Journal of Physical Chemistry Letters, 2022, 13, 1872-1878.	2.1	4
5	Stereodynamical Control of Cold Collisions of Polyatomic Molecules with Atoms. Journal of Physical Chemistry Letters, 2022, 13, 1777-1784.	2.1	11
6	Semiclassical Trajectory Studies of Reactive and Nonreactive Scattering of OH(<i>A</i> ² Σ ⁺) by H ₂ Based on an Improved Fullâ€Đimensional Ab Initio Diabatic Potential Energy Matrix. ChemPhysChem, 2022, 23, .	1.0	7
7	Acetylene hydrogenation catalyzed by bare and Ni doped CeO ₂ (110): the role of frustrated Lewis pairs. Physical Chemistry Chemical Physics, 2022, 24, 11295-11304.	1.3	12
8	First-Principles Insights into Adiabatic and Nonadiabatic Vibrational Energy-Transfer Dynamics during Molecular Scattering from Metal Surfaces: The Importance of Surface Reactivity. Journal of Physical Chemistry Letters, 2022, 13, 3450-3461.	2.1	9
9	Full-dimensional quantum studies of vibrational energy transfer dynamics between H ₂ O and Ar: theory assessing experiment. Physical Chemistry Chemical Physics, 2022, 24, 13542-13549.	1.3	10
10	Mechanism and Dynamics of CO ₂ Formation in Formic Acid Decomposition on Pt Surfaces. ACS Catalysis, 2022, 12, 6486-6494.	5.5	2
11	Differential Cross Sections for Cold, State-to-State Spin–Orbit Changing Collisions of NO(<i>v</i> =) Tj ETQq1	1 0.7843 1.1	14 _g rgBT /Ove
12	Internal conversion and intersystem crossing dynamics based on coupled potential energy surfaces with full geometry-dependent spin–orbit and derivative couplings. Nonadiabatic photodissociation dynamics of NH ₃ (A) leading to the NH(X ³ Σ ^{â"} , a ¹ Δ) + H ₂ channel. Physical Chemistry Chemical Physics, 2022, 24, 15060-15067.	1.3	3
13	Reactive and Nonreactive Collisions between NO(X ² Î) and O(³ P) under Hyperthermal Conditions. Journal of Physical Chemistry A, 2022, 126, 4277-4285.	1.1	5
14	Frustrated Lewis Pairs in Heterogeneous Catalysis: Theoretical Insights. Molecules, 2022, 27, 3734.	1.7	5
15	CO2 chemisorption and dissociation on flat and stepped transition metal surfaces. Applied Surface Science, 2022, 599, 154024.	3.1	11
16	Ultrasensitive small molecule fluorogenic probe for human heparanase. Chemical Science, 2021, 12, 239-246.	3.7	12
17	High-fidelity first principles nonadiabaticity: diabatization, analytic representation of global diabatic potential energy matrices, and quantum dynamics. Physical Chemistry Chemical Physics, 2021, 23, 24962-24983.	1.3	29
18	Quasiclassical simulations based on cluster models reveal vibration-facilitated roaming in the isomerization of CO adsorbed on NaCl. Nature Chemistry, 2021, 13, 249-254.	6.6	9

#	Article	IF	CITATIONS
19	Insights into the Formation of Hydroxyl Radicals with Nonthermal Vibrational Excitation in the Meinel Airglow. Journal of Physical Chemistry Letters, 2021, 12, 1822-1828.	2.1	5
20	Insights into adsorption, diffusion, and reactions of atomic nitrogen on a highly oriented pyrolytic graphite surface. Journal of Chemical Physics, 2021, 154, 074708.	1.2	5
21	Single atom catalysis poised to transition from an academic curiosity to an industrially relevant technology. Nature Communications, 2021, 12, 895.	5.8	52
22	Potential energy surfaces for high-energy N + O2 collisions. Journal of Chemical Physics, 2021, 154, 084304.	1.2	23
23	Enabling complete multichannel nonadiabatic dynamics: A global representation of the two-channel coupled, 1,21A and 13A states of NH3 using neural networks. Journal of Chemical Physics, 2021, 154, 094121.	1.2	19
24	Rainbow scattering in rotationally inelastic collisions of HCl and H2. Journal of Chemical Physics, 2021, 154, 104304.	1.2	2
25	High-Efficiency Water Gas Shift Reaction Catalysis on α-MoC Promoted by Single-Atom Ir Species. ACS Catalysis, 2021, 11, 5942-5950.	5.5	65
26	Direct Dynamics Simulations of Hyperthermal O(3P) Collisions with Pristine, Defected, Oxygenated, and Nitridated Graphene Surfaces. Journal of Physical Chemistry C, 2021, 125, 9795-9808.	1.5	10
27	Precision test of statistical dynamics with state-to-state ultracold chemistry. Nature, 2021, 593, 379-384.	13.7	53
28	Vibrational energy levels of the <i>S</i> ₀ and <i>S</i> ₁ states of formaldehyde using an accurate ab initio based global diabatic potential energy matrix. Molecular Physics, 2021, 119, .	0.8	3
29	Enabling a Unified Description of Both Internal Conversion and Intersystem Crossing in Formaldehyde: A Global Coupled Quasi-Diabatic Hamiltonian for Its S ₀ , S ₁ , and T ₁ States. Journal of Chemical Theory and Computation, 2021, 17, 4157-4168.	2.3	12
30	Rotational Modulation of Ã2A″-State Photodissociation of HCO via Renner–Teller Nonadiabatic Transitions. Journal of Physical Chemistry Letters, 2021, 12, 6582-6588.	2.1	7
31	Unraveling the Intermediate Reaction Complexes and Critical Role of Support-Derived Oxygen Atoms in CO Oxidation on Single-Atom Pt/CeO ₂ . ACS Catalysis, 2021, 11, 8701-8715.	5.5	51
32	Full-Dimensional Global Potential Energy Surface for the KRb + KRb â†' K ₂ Rb ₂ * â†' K ₂ + Rb ₂ Reaction with Accurate Long-Range Interactions and Quantum Statistical Calculation of the Product State Distribution under Ultracold Conditions. Journal of Physical Chemistry A, 2021, 125, 6198-6206.	1.1	3
33	The puzzle of rapid hydrogen oxidation on Pt(111). Molecular Physics, 2021, 119, .	0.8	7
34	Full-dimensional quantum stereodynamics of the non-adiabatic quenching of OH(A2Σ+) by H2. Nature Chemistry, 2021, 13, 909-915.	6.6	17
35	A Time-Independent Quantum Approach to Ro-vibrationally Inelastic Scattering between Atoms and Triatomic Molecules. Journal of Physical Chemistry A, 2021, 125, 6864-6871.	1.1	8
36	Quantum dynamics with ab initio potentials. Journal of Chemical Physics, 2021, 155, 080401.	1.2	2

#	Article	IF	CITATIONS
37	Dynamics of Initial Hydrogen Spillover from a Single Atom Platinum Active Site to the Cu(111) Host Surface: The Impact of Substrate Electron–Hole Pairs. Journal of Physical Chemistry Letters, 2021, 12, 8423-8429.	2.1	19
38	Determining reaction pathways at low temperatures by isotopic substitution: the case of BeD ⁺ + H ₂ O. New Journal of Physics, 2021, 23, 115004.	1.2	4
39	Vibrational mode-specificity in the dynamics of the Cl + C2H6 → HCl + C2H5 reaction. Journal of Chemical Physics, 2021, 155, 114303.	1.2	14
40	Towards bridging the structure gap in heterogeneous catalysis: the impact of defects in dissociative chemisorption of methane on Ir surfaces. Physical Chemistry Chemical Physics, 2021, 23, 4376-4385.	1.3	31
41	Theoretical H + O ₃ rate coefficients from ring polymer molecular dynamics on an accurate global potential energy surface: assessing experimental uncertainties. Physical Chemistry Chemical Physics, 2021, 23, 3300-3310.	1.3	4
42	lsomer-specific kinetics of the C ⁺ + H ₂ O reaction at the temperature of interstellar clouds. Science Advances, 2021, 7, .	4.7	16
43	Vibrational energy pooling <i>via</i> collisions between asymmetric stretching excited CO ₂ : a quasi-classical trajectory study on an accurate full-dimensional potential energy surface. Physical Chemistry Chemical Physics, 2021, 23, 24165-24174.	1.3	2
44	Engineering catalyst supports to stabilize PdOx two-dimensional rafts for water-tolerant methane oxidation. Nature Catalysis, 2021, 4, 830-839.	16.1	86
45	Full-Dimensional Potential Energy Surface for Ro-vibrationally Inelastic Scattering between H ₂ Molecules. Journal of Chemical Theory and Computation, 2021, 17, 6747-6756.	2.3	11
46	Infrared Activities of Adsorbed Species on Metal Surfaces: The Puzzle of Adsorbed Methyl (CH3). Journal of Physical Chemistry Letters, 2021, 12, 11164-11169.	2.1	0
47	Orbiting resonances in formaldehyde reveal coupling of roaming, radical, and molecular channels. Science, 2021, 374, 1122-1127.	6.0	15
48	Quantum Wave Packet Treatment of Cold Nonadiabatic Reactive Scattering at the State-To-State Level. Journal of Physical Chemistry A, 2021, 125, 10111-10120.	1.1	15
49	Assessing density functionals for describing methane dissociative chemisorption on Pt(110)-(2×1) surface. Chinese Journal of Chemical Physics, 2021, 34, 883-895.	0.6	2
50	Environmentally benign synthesis of a PGM-free catalyst for low temperature CO oxidation. Applied Catalysis B: Environmental, 2020, 264, 118547.	10.8	20
51	Extending the Representation of Multistate Coupled Potential Energy Surfaces To Include Properties Operators Using Neural Networks: Application to the 1,2 ¹ A States of Ammonia. Journal of Chemical Theory and Computation, 2020, 16, 302-313.	2.3	39
52	Insights into the Mechanism of Nonadiabatic Photodissociation from Product Vibrational Distributions. The Remarkable Case of Phenol. Journal of Physical Chemistry Letters, 2020, 11, 191-198.	2.1	25
53	Impact of Diabolical Singular Points on Nonadiabatic Dynamics and a Remedy: Photodissociation of Ammonia in the First Band. Journal of Chemical Theory and Computation, 2020, 16, 6776-6784.	2.3	6
54	Photo-excitation of long-lived transient intermediates in ultracold reactions. Nature Physics, 2020, 16, 1132-1136.	6.5	76

#	Article	IF	CITATIONS
55	Theoretical Investigations of Rate Coefficients for H + O3and HO2+ O Reactions on a Full-Dimensional Potential Energy Surface. Journal of Physical Chemistry A, 2020, 124, 6427-6437.	1.1	16
56	Neural Network Based Quasi-diabatic Representation for S ₀ and S ₁ States of Formaldehyde. Journal of Physical Chemistry A, 2020, 124, 10132-10142.	1.1	21
57	Exploring reactivity and product formation in N(4S) collisions with pristine and defected graphene with direct dynamics simulations. Journal of Chemical Physics, 2020, 153, 184702.	1.2	13
58	Dynamics studies of diglycine scattering from highly oriented pyrolytic graphite. Chinese Journal of Chemical Physics, 2020, 33, 196-202.	0.6	3
59	Energy transfer between vibrationally excited carbon monoxide based on a highly accurate six-dimensional potential energy surface. Journal of Chemical Physics, 2020, 153, 054310.	1.2	24
60	Origin of the "odd―behavior in the ultraviolet photochemistry of ozone. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 21065-21069.	3.3	10
61	Potential Energy Landscape of CO Adsorbates on NaCl(100) and Implications in Isomerization of Vibrationally Excited CO. Journal of Physical Chemistry C, 2020, 124, 19146-19156.	1.5	12
62	Advances and New Challenges to Bimolecular Reaction Dynamics Theory. Journal of Physical Chemistry Letters, 2020, 11, 8844-8860.	2.1	46
63	Spectroscopic identification of the •SSNO isomers. Journal of Chemical Physics, 2020, 153, 094303.	1.2	3
64	Following the microscopic pathway to adsorption through chemisorption and physisorption wells. Science, 2020, 369, 1461-1465.	6.0	42
65	Time-independent quantum theory on vibrational inelastic scattering between atoms and open-shell diatomic molecules: Applications to NO + Ar and NO + H scattering. Journal of Chemical Physics, 2020, 153, 144306.	1.2	13
66	Origin of Confined Catalysis in Nanoscale Reactors between Two-Dimensional Covers and Metal Substrates: Mechanical or Electronic?. Journal of Physical Chemistry C, 2020, 124, 11564-11573.	1.5	14
67	State-to-state scattering of highly vibrationally excited NO at broadly tunable energies. Nature Chemistry, 2020, 12, 528-534.	6.6	20
68	Nonadiabatic Electronic Energy Transfer in the Chemical Oxygen–lodine Laser: Powered by Derivative Coupling or Spin–Orbit Coupling?. Journal of Physical Chemistry Letters, 2020, 11, 4768-4773.	2.1	10
69	On the nonadiabatic collisional quenching of OH(A) by H ₂ : a four coupled quasi-diabatic state description. Physical Chemistry Chemical Physics, 2020, 22, 13516-13527.	1.3	15
70	High-Fidelity Potential Energy Surfaces for Gas-Phase and Gas–Surface Scattering Processes from Machine Learning. Journal of Physical Chemistry Letters, 2020, 11, 5120-5131.	2.1	127
71	A Global Full-Dimensional Potential Energy Surface for the K ₂ Rb ₂ Complex and Its Lifetime. Journal of Physical Chemistry Letters, 2020, 11, 2605-2610.	2.1	17
72	Mechanistic Insights into Photocatalyzed H ₂ Dissociation on Au Clusters. Journal of the American Chemical Society, 2020, 142, 13090-13101.	6.6	48

#	Article	IF	CITATIONS
73	Many-Body Permutationally Invariant Polynomial Neural Network Potential Energy Surface for N ₄ . Journal of Chemical Theory and Computation, 2020, 16, 4822-4832.	2.3	40
74	Statistical quantum mechanical approach to diatom–diatom capture dynamics and application to ultracold KRb + KRb reaction. Journal of Chemical Physics, 2020, 152, 241103.	1.2	19
75	New Perspectives on CO ₂ –Pt(111) Interaction with a High-Dimensional Neural Network Potential Energy Surface. Journal of Physical Chemistry C, 2020, 124, 5174-5181.	1.5	37
76	Mode Specificity in the OH + HO ₂ → H ₂ O + O ₂ Reaction: Enhancement of Reactivity by Exciting a Spectator Mode. Journal of the American Chemical Society, 2020, 142, 3331-3335.	6.6	33
77	Stereodynamic control of overlapping resonances in cold molecular collisions. Physical Review Research, 2020, 2, .	1.3	14
78	Comprehensive Investigations of the Cl + CH ₃ OH → HCl + CH _{3 OH Reaction: Validation of Experiment and Dynamic Insights. CCS Chemistry, 2020, 2, 882-894.}	0/ 4.6	CH ₃₆ sub>2<
79	Stereodynamical Control of a Quantum Scattering Resonance in Cold Molecular Collisions. Physical Review Letters, 2019, 123, 043401.	2.9	32
80	Dissociative Chemisorption of Methane on Stepped Ir(332) Surface: Density Functional Theory and Ab Initio Molecular Dynamics Studies. Journal of Physical Chemistry C, 2019, 123, 20893-20902.	1.5	12
81	The <i>JPC</i> Periodic Table. Journal of Physical Chemistry A, 2019, 123, 5837-5848.	1.1	2
82	The <i>JPC</i> Periodic Table. Journal of Physical Chemistry B, 2019, 123, 5973-5984.	1.2	1
83	Stereodynamical control of product branching in multi-channel barrierless hydrogen abstraction of CH ₃ OH by F. Chemical Science, 2019, 10, 7994-8001.	3.7	24
84	The <i>JPC</i> Periodic Table. Journal of Physical Chemistry Letters, 2019, 10, 4051-4062.	2.1	2
85	On the mechanism of alkyne hydrogenation catalyzed by Ga-doped ceria. Journal of Catalysis, 2019, 375, 410-418.	3.1	43
86	Globally Accurate Full-Dimensional Potential Energy Surface for H ₂ + HCl Inelastic Scattering. Journal of Physical Chemistry A, 2019, 123, 6578-6586.	1.1	10
87	Breakdown of energy transfer gap laws revealed by full-dimensional quantum scattering between HF molecules. Nature Communications, 2019, 10, 4658.	5.8	17
88	Hot-electron effects during reactive scattering of H ₂ from Ag(111): the interplay between mode-specific electronic friction and the potential energy landscape. Chemical Science, 2019, 10, 1089-1097.	3.7	35
89	Rate coefficients and branching ratio for multi-channel hydrogen abstractions from CH3OH by F. Chinese Journal of Chemical Physics, 2019, 32, 84-88.	0.6	12
90	Hot electron effects during reactive scattering of H ₂ from Ag(111): assessing the sensitivity to initial conditions, coupling magnitude, and electronic temperature. Faraday Discussions, 2019, 214, 105-121.	1.6	15

#	Article	IF	CITATIONS
91	Dissection of the multichannel reaction of acetylene with atomic oxygen: from the global potential energy surface to rate coefficients and branching dynamics. Physical Chemistry Chemical Physics, 2019, 21, 1408-1416.	1.3	7
92	Diabatic and adiabatic representations: Electronic structure caveats. Computational and Theoretical Chemistry, 2019, 1152, 41-52.	1.1	15
93	Up to a Sign. The Insidious Effects of Energetically Inaccessible Conical Intersections on Unimolecular Reactions. Accounts of Chemical Research, 2019, 52, 501-509.	7.6	39
94	Mechanistic details of the MnO+ + H2/D2 reaction through temperature-dependent kinetics and statistical modeling. International Journal of Mass Spectrometry, 2019, 435, 26-33.	0.7	5
95	Scattering Dynamics of Glycine, H2O, and CO2 on Highly Oriented Pyrolytic Graphite. Journal of Physical Chemistry C, 2019, 123, 3605-3621.	1.5	7
96	lsotope-selective chemistry in the Be ⁺ (² S _{1/2}) + HOD → BeOD ⁺ /BeOH ⁺ + H/D reaction. Physical Chemistry Chemical Physics, 2019, 21, 14005-14011.	1.3	14
97	First-principles dynamics of collisional intersystem crossing: resonance enhanced quenching of C(¹ D) by N ₂ . Physical Chemistry Chemical Physics, 2019, 21, 8645-8653.	1.3	9
98	Competition between Proton Transfer and Proton Isomerization in the N ₂ + HOC ⁺ Reaction on an <i>Ab Initio</i> -Based Global Potential Energy Surface. Journal of Physical Chemistry A, 2019, 123, 5347-5355.	1.1	6
99	Neural network based quasi-diabatic Hamiltonians with symmetry adaptation and a correct description of conical intersections. Journal of Chemical Physics, 2019, 150, 214101.	1.2	38
100	Quantum Stereodynamics of H ₂ Scattering from Co(0001): Influence of Reaction Channels. Journal of Physical Chemistry C, 2019, 123, 16223-16231.	1.5	8
101	Anab initiobased full-dimensional potential energy surface for OH + O2â‡,, HO3and low-lying vibrational levels of HO3. Physical Chemistry Chemical Physics, 2019, 21, 13766-13775.	1.3	10
102	Photoelectron–Photofragment Coincidence Studies on the Dissociation Dynamics of the OH–CH ₄ Complex. Journal of Physical Chemistry A, 2019, 123, 4825-4833.	1.1	8
103	A Quasi-Diabatic Representation of the 1,2 ¹ A States of Methylamine. Journal of Physical Chemistry A, 2019, 123, 5231-5241.	1.1	19
104	Au ₂ ⁺ cannot catalyze conversion of methane to ethene at low temperature. Catalysis Science and Technology, 2019, 9, 2767-2780.	2.1	13
105	Dynamics in reactions on metal surfaces: A theoretical perspective. Journal of Chemical Physics, 2019, 150, 180901.	1.2	56
106	Bond dissociation energy of Au2+: A guided ion beam and theoretical investigation. Journal of Chemical Physics, 2019, 150, 174305.	1.2	9
107	Absorption Spectra of Acetylene, Vinylidene, and Their Deuterated Isotopologues on Ab Initio Potential Energy and Dipole Moment Surfaces. Journal of Physical Chemistry A, 2019, 123, 4232-4240.	1.1	7
108	Differential Cross Sections for State-to-State Collisions of NO(<i>v</i> = 10) in Near-Copropagating Beams. Journal of Physical Chemistry Letters, 2019, 10, 2422-2427.	2.1	17

#	Article	IF	CITATIONS
109	Origin of Thermal and Hyperthermal CO ₂ from CO Oxidation on Pt Surfaces: The Role of Postâ€Transitionâ€State Dynamics, Active Sites, and Chemisorbed CO ₂ . Angewandte Chemie, 2019, 131, 6990-6994.	1.6	7
110	Diffraction of CH ₄ from a Metal Surface. Journal of Physical Chemistry Letters, 2019, 10, 1574-1580.	2.1	12
111	Origin of Thermal and Hyperthermal CO ₂ from CO Oxidation on Pt Surfaces: The Role of Postâ€Transitionâ€State Dynamics, Active Sites, and Chemisorbed CO ₂ . Angewandte Chemie - International Edition, 2019, 58, 6916-6920.	7.2	31
112	Accurate characterization of the lowest triplet potential energy surface of SO2 with a coupled cluster method. Journal of Chemical Physics, 2019, 150, 144303.	1.2	2
113	Viewpoint: New Physical Insights from Kinetics Studies. Journal of Physical Chemistry A, 2019, 123, 3057-3057.	1.1	4
114	Steric Effects in CO Oxidation on Pt(111) by Impinging Oxygen Atoms Lead to an Exclusive Hot Atom Mechanism. Journal of Physical Chemistry C, 2019, 123, 10509-10516.	1.5	8
115	Stabilizing High Metal Loadings of Thermally Stable Platinum Single Atoms on an Industrial Catalyst Support. ACS Catalysis, 2019, 9, 3978-3990.	5.5	233
116	Quantum dynamical investigation of product state distributions of the F + CH3OH → HF + CH3O reaction via photodetachment of the F⒒(HOCH3) anion. Journal of Chemical Physics, 2019, 150, 044301.	1.2	5
117	Nonadiabatic Dynamics in Photodissociation of Hydroxymethyl in the 32A(3px) Rydberg State: A Nine-Dimensional Quantum Study. Journal of Physical Chemistry A, 2019, 123, 1937-1944.	1.1	8
118	Adiabatic and nonadiabatic energy dissipation during scattering of vibrationally excited CO from Au(111). Physical Review B, 2019, 100, .	1.1	23
119	Unexpected Indirect Dynamics in Base-Induced Elimination. Journal of the American Chemical Society, 2019, 141, 20300-20308.	6.6	19
120	Dynamical interference in the vibronic bond breaking reaction of HCO. Science Advances, 2019, 5, eaau0582.	4.7	15
121	Synthesis of Nickelâ€Doped Ceria Catalysts for Selective Acetylene Hydrogenation. ChemCatChem, 2019, 11, 1526-1533.	1.8	30
122	Reactive and Nonreactive Scattering of HCl from Au(111): An Ab Initio Molecular Dynamics Study. Journal of Physical Chemistry C, 2019, 123, 2287-2299.	1.5	30
123	Highly Localized SERS Measurements Using Single Silicon Nanowires Decorated with DNA Origami-Based SERS Probe. Nano Letters, 2019, 19, 1061-1066.	4.5	34
124	Representation of coupled adiabatic potential energy surfaces using neural network based quasi-diabatic Hamiltonians: 1,2 ² A′ states of LiFH. Physical Chemistry Chemical Physics, 2019, 21, 14205-14213.	1.3	45
125	Combined Experimental–Theoretical Study of the OH + CO → H + CO ₂ Reaction Dynamics. Journal of Physical Chemistry Letters, 2018, 9, 1229-1236.	2.1	18
126	The near-UV absorber OSSO and its isomers. Chemical Communications, 2018, 54, 4517-4520.	2.2	18

#	Article	IF	CITATIONS
127	Thermal Rate Coefficients and Kinetic Isotope Effects for the Reaction OH + CH ₄ → H ₂ O + CH ₃ on an ab Initio-Based Potential Energy Surface. Journal of Physical Chemistry A, 2018, 122, 2645-2652.	1.1	16
128	State-to-state quantum dynamics of the H + LiF → Li + HF reaction on an accurate ab initio potent surface. Chemical Physics, 2018, 515, 427-433.	tial gnerg	у _З
129	First-Principles Insights into Ammonia Decomposition Catalyzed by Ru Clusters Anchored on Carbon Nanotubes: Size Dependence and Interfacial Effects. Journal of Physical Chemistry C, 2018, 122, 9091-9100.	1.5	35
130	Quantum dynamics of ClH2Oâ^' photodetachment: Isotope effect and impact of anion vibrational excitation. Journal of Chemical Physics, 2018, 148, 064305.	1.2	4
131	A new potential energy surface and state-to-state quantum dynamics of the Liâ€ā€+â€ā€HFâ€ā†'â€Hâ€ã€+á Chemical Physics, 2018, 509, 66-71.	â€⁻â€⁻LiF 0.9	reaction.
132	Autodetachment from Vibrationally Excited Vinylidene Anions. Journal of Physical Chemistry Letters, 2018, 9, 1058-1063.	2.1	15
133	Active vs. spectator modes in nonadiabatic photodissociation dynamics of the hydroxymethyl radical via the 22 <i>A</i> (3 <i>s</i>) Rydberg state. Journal of Chemical Physics, 2018, 148, 044305.	1.2	11
134	Probing the rate-determining region of the potential energy surface for a prototypical ion–molecule reaction. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2018, 376, 20170146.	1.6	2
135	Signatures of a Conical Intersection in Adiabatic Dissociation on the Ground Electronic State. Journal of the American Chemical Society, 2018, 140, 1986-1989.	6.6	42
136	<i>Ab initio</i> molecular dynamics study of the Eley-Rideal reaction of H + Cl–Au(111) → HCl + Au(111): Impact of energy dissipation to surface phonons and electron-hole pairs. Journal of Chemical Physics, 2018, 148, 014702.	1.2	25
137	Constructing High-Dimensional Neural Network Potential Energy Surfaces for Gas–Surface Scattering and Reactions. Journal of Physical Chemistry C, 2018, 122, 1761-1769.	1.5	78
138	State-to-state mode specificity in H + DOH(\hat{l} ¹ / ₂ OH = 1) â†' HD + OH(\hat{l} ¹ / ₂ 2 = 0) reaction: vibrational non-adiabaticity or local-mode excitation?. Physical Chemistry Chemical Physics, 2018, 20, 191-198.	^y 1.3	12
139	Capture of SO ₃ isomers in the oxidation of sulfur monoxide with molecular oxygen. Chemical Communications, 2018, 54, 1690-1693.	2.2	19
140	Modified Gaussian Wave Packet Method for Calculating Initial State Wave Functions in Photodissociation. Journal of Chemical Theory and Computation, 2018, 14, 5527-5534.	2.3	3
141	Permutation invariant polynomial neural network approach to fitting potential energy surfaces. IV. Coupled diabatic potential energy matrices. Journal of Chemical Physics, 2018, 149, 144107.	1.2	61
142	Design of Effective Catalysts for Selective Alkyne Hydrogenation by Doping of Ceria with a Single-Atom Promotor. Journal of the American Chemical Society, 2018, 140, 12964-12973.	6.6	204
143	Correlating DFT Calculations with CO Oxidation Reactivity on Ga-Doped Pt/CeO ₂ Single-Atom Catalysts. Journal of Physical Chemistry C, 2018, 122, 22460-22468.	1.5	91
144	Unraveling the Stereodynamics of Cold Controlled <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi>HD</mml:mi><mml:mtext>â^3</mml:mtext><mml:msub><mml:mrow><m mathvariant="normal">H</m </mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow>Collisions. Physical Review Letters, 2018, 121, 113401.</mml:msub></mml:mrow></mml:math 	n æl9 mi > <td>39 nrow></td>	39 nrow>

#	Article	IF	CITATIONS
145	Dissociative Chemisorption of O ₂ on Al(111): Dynamics on a Correlated Wave-Function-Based Potential Energy Surface. Journal of Physical Chemistry Letters, 2018, 9, 3271-3277.	2.1	40
146	Low temperature rates for key steps of interstellar gas-phase water formation. Science Advances, 2018, 4, eaar3417.	4.7	19
147	Communication: Fingerprints of reaction mechanisms in product distributions: Eley-Rideal-type reactions between D and CD3/Cu(111). Journal of Chemical Physics, 2018, 149, 031101.	1.2	16
148	Stretching vibration is a spectator in nucleophilic substitution. Science Advances, 2018, 4, eaas9544.	4.7	37
149	Influence of Renner–Teller Coupling between Electronic States on H + CO Inelastic Scattering. Journal of Physical Chemistry A, 2018, 122, 6381-6390.	1.1	4
150	Plasmonic Hot-Carrier-Mediated Tunable Photochemical Reactions. ACS Nano, 2018, 12, 8415-8422.	7.3	75
151	Single atom detachment from Cu clusters, and diffusion and trapping on CeO ₂ (111): implications in Ostwald ripening and atomic redispersion. Nanoscale, 2018, 10, 17893-17901.	2.8	47
152	Vibrational enhancement in the dynamics of ammonia dissociative chemisorption on Ru(0001). Journal of Chemical Physics, 2018, 149, 044703.	1.2	15
153	Selective hydrogenation of 1,3-butadiene catalyzed by a single Pd atom anchored on graphene: the importance of dynamics. Chemical Science, 2018, 9, 5890-5896.	3.7	55
154	Fermi resonance controlled product branching in the H + HOD reaction. Physical Chemistry Chemical Physics, 2018, 20, 17029-17037.	1.3	16
155	Optical Control of Reactions between Water and Laser-Cooled Be ⁺ Ions. Journal of Physical Chemistry Letters, 2018, 9, 3555-3560.	2.1	37
156	High-Dimensional Atomistic Neural Network Potentials for Molecule–Surface Interactions: HCl Scattering from Au(111). Journal of Physical Chemistry Letters, 2017, 8, 666-672.	2.1	94
157	Photoabsorption Assignments for the C̃1B2 ↕X̃1A1 Vibronic Transitions of SO2, Using New Ab Initio Potential Energy and Transition Dipole Surfaces. Journal of Physical Chemistry A, 2017, 121, 1012-1021.	1.1	18
158	Photodissociation of phenol via nonadiabatic tunneling: Comparison of two ab initio based potential energy surfaces. Chemical Physics Letters, 2017, 683, 222-227.	1.2	23
159	Ab Initio Molecular Dynamics Study of Dissociative Chemisorption and Scattering of CO ₂ on Ni(100): Reactivity, Energy Transfer, Steering Dynamics, and Lattice Effects. Journal of Physical Chemistry C, 2017, 121, 5594-5602.	1.5	41
160	Nonadiabatic tunneling via conical intersections and the role of the geometric phase. Physical Review A, 2017, 95, .	1.0	48
161	Stateâ€ŧoâ€state quantum reactive scattering in fourâ€atom systems. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2017, 7, e1301.	6.2	27
162	Cover Image, Volume 7, Issue 3. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2017, 7, e1317.	6.2	2

#	Article	IF	CITATIONS
163	Rotational excitation of the interstellar NH2 radical by H2. Journal of Chemical Physics, 2017, 146, 064309.	1.2	12
164	Adsorption of methylene blue and its N-demethylated derivatives on the (111) face of coinage metals: The importance of dispersion interactions. Journal of Chemical Physics, 2017, 146, 164701.	1.2	17
165	Tumor-secreted anterior gradient-2 binds to VEGF and FGF2 and enhances their activities by promoting their homodimerization. Oncogene, 2017, 36, 5098-5109.	2.6	45
166	Temperature and Pressure Dependences of the Reactions of Fe ⁺ with Methyl Halides CH ₃ X (X = Cl, Br, I): Experiments and Kinetic Modeling Results. Journal of Physical Chemistry A, 2017, 121, 4058-4068.	1.1	7
167	Dynamics of carbon monoxide dissociation on Co(112̄0). Physical Chemistry Chemical Physics, 2017, 19, 12826-12837.	1.3	9
168	Final State Resolved Quantum Predissociation Dynamics of SO ₂ (<i>CÌf</i> ¹ <i>B</i> _{2}) and Its Isotopomers via a Crossing with a Singlet Repulsive State. Journal of Physical Chemistry A, 2017, 121, 4930-4938.	1.1	9
169	First-principles C band absorption spectra of SO ₂ and its isotopologues. Journal of Chemical Physics, 2017, 146, 154305.	1.2	7
170	Nonadiabatic photodissociation dynamics of the hydroxymethyl radical via the 22 <i>A</i> (3 <i>s</i>) Rydberg state: A four-dimensional quantum study. Journal of Chemical Physics, 2017, 146, 224306.	1.2	13
171	Competition between the H- and D-atom transfer channels in the H ₂ O ⁺ + HD reaction: reduced-dimensional quantum and quasi-classical studies. Physical Chemistry Chemical Physics, 2017, 19, 17396-17403.	1.3	9
172	Thermally Stable and Regenerable Platinum–Tin Clusters for Propane Dehydrogenation Prepared by Atom Trapping on Ceria. Angewandte Chemie - International Edition, 2017, 56, 8986-8991.	7.2	262
173	Phosphomolybdic acid supported atomically dispersed transition metal atoms (M = Fe, Co, Ni, Cu, Ru,) Tj ETQq1 1 Advances, 2017, 7, 24925-24932.	0.78431 1.7	4 rgBT /Ovei 23
174	Constructive and Destructive Interference in Nonadiabatic Tunneling via Conical Intersections. Journal of Chemical Theory and Computation, 2017, 13, 1902-1910.	2.3	34
175	A global coupled cluster potential energy surface for HCl + OH ↔ Cl + H ₂ O. Physical Chemistry Chemical Physics, 2017, 19, 9770-9777.	1.3	19
176	Representing Global Reactive Potential Energy Surfaces Using Gaussian Processes. Journal of Physical Chemistry A, 2017, 121, 2552-2557.	1.1	72
177	Charge Transfer Doping Induced Conformational Ordering of a Non-Crystalline Conjugated Polymer. Journal of Physical Chemistry C, 2017, 121, 23817-23826.	1.5	7
178	Effects of vibrational excitation on the F + H ₂ O → HF + OH reaction: dissociative photodetachment of overtone-excited [F–H–OH] ^{â^'} . Chemical Science, 2017, 8, 7821-7833.	3.7	16
179	Encoding of vinylidene isomerization in its anion photoelectron spectrum. Science, 2017, 358, 336-339.	6.0	55
180	Potential energy surface stationary points and dynamics of the F ^{â^'} + CH ₃ 1 double inversion mechanism. Physical Chemistry Chemical Physics. 2017, 19, 20127-20136	1.3	31

#	Article	IF	CITATIONS
181	Dynamic mapping of conical intersection seams: A general method for incorporating the geometric phase in adiabatic dynamics in polyatomic systems. Journal of Chemical Physics, 2017, 147, 044109.	1.2	25
182	Kinetics and dynamics of the C(³ P) + H ₂ O reaction on a full-dimensional accurate triplet state potential energy surface. Physical Chemistry Chemical Physics, 2017, 19, 23280-23288.	1.3	13
183	Dynamics of transient species <i>via</i> anion photodetachment. Chemical Society Reviews, 2017, 46, 7650-7667.	18.7	35
184	Dissociative chemisorption of methane on Ni(111) using a chemically accurate fifteen dimensional potential energy surface. Physical Chemistry Chemical Physics, 2017, 19, 30540-30550.	1.3	40
185	Accurate Determination of Tunneling-Affected Rate Coefficients: Theory Assessing Experiment. Journal of Physical Chemistry Letters, 2017, 8, 3392-3397.	2.1	22
186	Mode Specific Electronic Friction in Dissociative Chemisorption on Metal Surfaces: <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mrow><mml:mi mathvariant="normal">H</mml:mi </mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow>on Ag(111) Physical Paview Letters, 2017, 118, 256001</mml:mrow></mml:math 	2.9 >> <td>60 nrow></td>	60 nrow>
187	Feshbach resonances in the exit channel of the F + CH3OH â†' HF + CH3O reaction o transition-state spectroscopy. Nature Chemistry, 2017, 9, 950-955.	bseryed u	sing 70
188	Surprising behaviors in the temperature dependent kinetics of diatomic interhalogens with anions and cations. Journal of Chemical Physics, 2017, 146, 214307.	1.2	7
189	Experimental and theoretical studies of the reactions of ground-state sulfur atoms with hydrogen and deuterium. Journal of Chemical Physics, 2017, 147, 134302.	1.2	6
190	The ortho-to-para ratio of H ₂ Cl ⁺ : Quasi-classical trajectory calculations and new simulations in light of new observations. Astronomy and Astrophysics, 2017, 608, A96.	2.1	6
191	Imaging a multidimensional multichannel potential energy surface: Photodetachment of Hâ^'(NH3) and NH4â''. Journal of Chemical Physics, 2016, 144, 244311.	1.2	19
192	The ortho-to-para ratio of interstellar NH ₂ : quasi-classical trajectory calculations and new simulations. Astronomy and Astrophysics, 2016, 596, A35.	2.1	7
193	Calculated vibrational states of ozone up to dissociation. Journal of Chemical Physics, 2016, 144, 074302.	1.2	39
194	Electron-hole pair effects in methane dissociative chemisorption on Ni(111). Journal of Chemical Physics, 2016, 145, 044704.	1.2	51
195	A reactant-coordinate-based wave packet method for full-dimensional state-to-state quantum dynamics of tetra-atomic reactions: Application to both the abstraction and exchange channels in the H + H2O reaction. Journal of Chemical Physics, 2016, 144, 064104.	1.2	36
196	New <i>ab initio</i> adiabatic potential energy surfaces and bound state calculations for the singlet ground Xlƒ1A1 and excited Clƒ1B2(21A′) states of SO2. Journal of Chemical Physics, 2016, 144, 174301.	1.2	17
197	On the incorporation of the geometric phase in general single potential energy surface dynamics: A removable approximation to ab initio data. Journal of Chemical Physics, 2016, 145, 234111.	1.2	25
198	Communication: Mode specific quantum dynamics of the F + CHD3 → HF + CD3 reaction. Journal of Chemical Physics, 2016, 144, 171101.	1.2	47

#	Article	IF	CITATIONS
199	Communication: Equivalence between symmetric and antisymmetric stretching modes of NH3 in promoting H + NH3 → H2 + NH2 reaction. Journal of Chemical Physics, 2016, 145, 131101.	1.2	25
200	Permutation invariant potential energy surfaces for polyatomic reactions using atomistic neural networks. Journal of Chemical Physics, 2016, 144, 224103.	1.2	48
201	Two-center three-electron bonding in ClNH3 revealed via helium droplet infrared laser Stark spectroscopy: Entrance channel complex along the Cl + NH3 → ClNH2 + H reaction. Journal of Chemical Physics, 2016, 144, 164301.	1.2	13
202	State-to-state differential cross sections for D2 + OH → D + DOH reaction: Influence of vibrational excitation of OH reactant. Journal of Chemical Physics, 2016, 145, 134308.	1.2	21
203	A new set of potential energy surfaces for HCO: Influence of Renner-Teller coupling on the bound and resonance vibrational states. Journal of Chemical Physics, 2016, 144, 244301.	1.2	22
204	A reactant-coordinate-based approach to state-to-state differential cross sections for tetratomic reactions. Journal of Chemical Physics, 2016, 145, 184106.	1.2	17
205	Publisher's Note: "New <i>ab initio</i> adiabatic potential energy surfaces and bound state calculations for the singlet ground X̃1A1 and excited Clƒ1B2(21A′) states of SO2―[J. Chem. Phys. 144, (2016)]. Journal of Chemical Physics, 2016, 144, 209901.	1743 D2	0
206	Communication: Enhanced dissociative chemisorption of CO2 via vibrational excitation. Journal of Chemical Physics, 2016, 144, 091101.	1.2	52
207	Quantum dynamics of water dissociative chemisorption on rigid Ni(111): An approximate nine-dimensional treatment. Journal of Chemical Physics, 2016, 144, 164706.	1.2	36
208	State-to-state mode selectivity in the HD + OH reaction: Perspectives from two product channels. Journal of Chemical Physics, 2016, 144, 214303.	1.2	20
209	Full-Dimensional Quantum Calculations of Vibrational Levels of NH ₄ ⁺ and Isotopomers on An Accurate Ab Initio Potential Energy Surface. Journal of Physical Chemistry A, 2016, 120, 2185-2193.	1.1	5
210	Full-Dimensional Potential Energy Surface and Ro-vibrational Levels of Dioxirane. Journal of Physical Chemistry A, 2016, 120, 2991-2998.	1.1	15
211	Origin of Steric Effects in Methane Dissociative Chemisorption. Journal of Physical Chemistry C, 2016, 120, 8220-8226.	1.5	18
212	Control of chemical reactivity by transition-state and beyond. Chemical Science, 2016, 7, 3992-4003.	3.7	78
213	Rate Coefficients of the HCl + OH → Cl + H ₂ O Reaction from Ring Polymer Molecular Dynamics. Journal of Physical Chemistry A, 2016, 120, 3433-3440.	1.1	36
214	Dynamics of the O-Atom Exchange Reaction ¹⁶ O(³ (i>P) + ¹⁸ O ¹⁸ O(³ Σ _g ^{a€"}) a†' ¹⁶ O ¹⁸ O(³ Σ _g ^{a€"}) + ¹⁸ O(³ <i>P</i>) at Hyperthermal Energies. Journal of Physical Chemistry A, 2016, 120, 5348-5359	1.1	22
215	Chemical Reaction Rate Coefficients from Ring Polymer Molecular Dynamics: Theory and Practical Applications. Journal of Physical Chemistry A, 2016, 120, 8488-8502.	1.1	113
216	Potential energy surfaces from high fidelity fitting of <i>ab initio</i> points: the permutation invariant polynomial - neural network approach. International Reviews in Physical Chemistry, 2016, 35, 479-506.	0.9	316

#	Article	IF	CITATIONS
217	Mode-Specific S _N 2 Reaction Dynamics. Journal of Physical Chemistry Letters, 2016, 7, 3322-3327.	2.1	63
218	Comparison of experimental and theoretical quantum-state-selected integral cross-sections for the H ₂ O ⁺ + H ₂ (D ₂) reactions in the collision energy range of 0.04–10.00 eV. Physical Chemistry Chemical Physics, 2016, 18, 22509-22515.	1.3	26
219	State-to-State Mode Specificity in F + CHD ₃ → HF/DF + CD ₃ /CHD ₂ Reaction. Journal of Physical Chemistry A, 2016, 120, 6521-6528.	1.1	18
220	Non-Adiabatic Effects on Excited States of Vinylidene Observed with Slow Photoelectron Velocity-Map Imaging. Journal of the American Chemical Society, 2016, 138, 16417-16425.	6.6	28
221	Accurate nonadiabatic dynamics. Physical Chemistry Chemical Physics, 2016, 18, 26335-26352.	1.3	104
222	Towards an accurate specific reaction parameter density functional for water dissociation on Ni(111): RPBE versus PW91. Physical Chemistry Chemical Physics, 2016, 18, 21817-21824.	1.3	25
223	Calculations of the active mode and energetic barrier to electron attachment to CF ₃ and comparison with kinetic modeling of experimental results. Physical Chemistry Chemical Physics, 2016, 18, 31064-31071.	1.3	3
224	An accurate multi-channel multi-reference full-dimensional global potential energy surface for the lowest triplet state of H2O2. Physical Chemistry Chemical Physics, 2016, 18, 29825-29835.	1.3	14
225	Mode specificity in the OH + CHD3 reaction: Reduced-dimensional quantum and quasi-classical studies on an ab initio based full-dimensional potential energy surface. Journal of Chemical Physics, 2016, 144, 164303.	1.2	15
226	Communication: Energy transfer and reaction dynamics for DCl scattering on Au(111): An <i>ab initio</i> molecular dynamics study. Journal of Chemical Physics, 2016, 145, 011102.	1.2	32
227	Analysis of the Pressure and Temperature Dependence of the Complex-Forming Bimolecular Reaction CH3OCH3 + Fe+. Journal of Physical Chemistry A, 2016, 120, 5264-5273.	1.1	7
228	Nonadiabatic Tunneling in Photodissociation of Phenol. Journal of the American Chemical Society, 2016, 138, 7828-7831.	6.6	126
229	Rate Coefficient for the ⁴ Hell¼ + CH ₄ Reaction at 500 K: Comparison between Theory and Experiment. Journal of Physical Chemistry B, 2016, 120, 1641-1648.	1.2	28
230	Electron–Hole Pair Effects in Polyatomic Dissociative Chemisorption: Water on Ni(111). Journal of Physical Chemistry Letters, 2016, 7, 327-331.	2.1	68
231	Toward Understanding the Roaming Mechanism in H + MgH → Mg + HH Reaction. Journal of Physical Chemistry A, 2016, 120, 5145-5154.	1.1	24
232	Recent Advances in Quantum Dynamics of Bimolecular Reactions. Annual Review of Physical Chemistry, 2016, 67, 135-158.	4.8	149
233	Rotational and Isotopic Effects in the H ₂ + OH ⁺ → H + H ₂ O ⁺ Reaction. Journal of Physical Chemistry A, 2016, 120, 4742-4748.	1.1	15
234	Quantum dynamics of polyatomic dissociative chemisorption on transition metal surfaces: mode specificity and bond selectivity. Chemical Society Reviews, 2016, 45, 3621-3640.	18.7	140

#	Article	IF	CITATIONS
235	Communication: State-to-state dynamics of the Cl + H2O → HCl + OH reaction: Energy flow into reaction coordinate and transition-state control of product energy disposal. Journal of Chemical Physics, 2015, 142, 241101.	1.2	39
236	Communication: An accurate full 15 dimensional permutationally invariant potential energy surface for the OH + CH4 → H2O + CH3 reaction. Journal of Chemical Physics, 2015, 143, 221103.	1.2	56
237	Mode specific dynamics of the H2 + CH3 → H + CH4 reaction studied using quasi-classical trajectory and eight-dimensional quantum dynamics methods. Journal of Chemical Physics, 2015, 143, 154307.	1.2	12
238	Quantum and classical dynamics of water dissociation on Ni(111): A test of the site-averaging model in dissociative chemisorption of polyatomic molecules. Journal of Chemical Physics, 2015, 143, 164705.	1.2	35
239	Site-specific dissociation dynamics of H2/D2 on Ag(111) and Co(0001) and the validity of the site-averaging model. Journal of Chemical Physics, 2015, 143, 114706.	1.2	34
240	Vibrational energy levels of the simplest Criegee intermediate (CH2OO) from full-dimensional Lanczos, MCTDH, and MULTIMODE calculations. Journal of Chemical Physics, 2015, 143, 084311.	1.2	9
241	Temperature-dependent kinetic measurements and quasi-classical trajectory studies for the OH+ + H2/D2 → H2O+/HDO+ + H/D reactions. Journal of Chemical Physics, 2015, 143, 114310.	1.2	12
242	Permutationally invariant fitting of intermolecular potential energy surfaces: A case study of the Ne-C2H2 system. Journal of Chemical Physics, 2015, 143, 214304.	1.2	23
243	Communication: On the competition between adiabatic and nonadiabatic dynamics in vibrationally mediated ammonia photodissociation in its A band. Journal of Chemical Physics, 2015, 142, 091101.	1.2	30
244	SO ₂ photolysis as a source for sulfur mass-independent isotope signatures in stratospehric aerosols. Atmospheric Chemistry and Physics, 2015, 15, 1843-1864.	1.9	64
245	Corrigendum to "SO ₂ photolysis as a source for sulfur mass-independent isotope signatures in stratospheric aerosols" published in Atmos. Chem. Phys., 15, 1843–1864, 2015. Atmospheric Chemistry and Physics, 2015, 15, 2569-2569.	1.9	2
246	Signatures of non-adiabatic dynamics in the fine-structure state distributions of the OH(X) f/A) f) products in the B-band photodissociation of H2O. Journal of Chemical Physics, 2015, 142, 124317.	1.2	23
247	Fifty Years of Chemical Reaction Dynamics. Journal of Physical Chemistry A, 2015, 119, 11949-11950.	1.1	2
248	Full-Dimensional Quantum Dynamical Studies of the Cl + HOD → HCl/DCl + OD/OH Reaction: Bond Selectivity and Isotopic Branching Ratio. Journal of Physical Chemistry A, 2015, 119, 12224-12230.	1.1	18
249	Reactive and Nonreactive Feshbach Resonances Accessed by Photodetachment of FH ₂ O [–] . Journal of Physical Chemistry Letters, 2015, 6, 4822-4826.	2.1	19
250	Spin-inversion and spin-selection in the reactions FeO ⁺ + H ₂ and Fe ⁺ + N ₂ O. Physical Chemistry Chemical Physics, 2015, 17, 19709-19717.	1.3	28
251	Modulations of Transition-State Control of State-to-State Dynamics in the F + H ₂ O → HF + OH Reaction. Journal of Physical Chemistry Letters, 2015, 6, 676-680.	2.1	37
252	Mode Specificity in the HCl + OH → Cl + H ₂ O Reaction: Polanyi's Rules vs Sudden Vector Projection Model. Journal of Physical Chemistry A, 2015, 119, 826-831.	1.1	35

#	Article	IF	CITATIONS
253	State-Resolved Quantum Dynamics of Photodetachment of HCO ₂ ^{â^²} /DCO ₂ ^{â^²} on an Accurate Global Potential Energy Surface. Journal of Physical Chemistry A, 2015, 119, 7316-7324.	1.1	8
254	Theoretical Insight into the Reaction Mechanism of Ethanol Steam Reforming on Co(0001). Journal of Physical Chemistry C, 2015, 119, 2680-2691.	1.5	22
255	An experimental and theoretical study on rotational constants of vibrationally excited CH2OO. Chemical Physics Letters, 2015, 621, 129-133.	1.2	25
256	Explicitly correlated MRCI-F12 potential energy surfaces for methane fit with several permutation invariant schemes and full-dimensional vibrational calculations. Molecular Physics, 2015, 113, 1823-1833.	0.8	63
257	Prediction of mode specificity in 1,3-dipolar cycloadditions using the Sudden Vector Projection model. Chemical Physics Letters, 2015, 624, 102-106.	1.2	4
258	Statistical modeling of the reactions Fe ⁺ + N ₂ O → FeO ⁺ + N ₂ and FeO ⁺ + CO → Fe ⁺ + CO ₂ . Physical Chemistry Chemical Physics, 2015, 17, 19700-19708.	1.3	24
259	Quantum Dynamics of Vinylidene Photodetachment on an Accurate Global Acetylene-Vinylidene Potential Energy Surface. Journal of Physical Chemistry A, 2015, 119, 8488-8496.	1.1	20
260	Vibrational and Rotational Mode Specificity in The Cl + H ₂ O → HCl + OH Reaction: A Quantum Dynamical Study. Journal of Physical Chemistry A, 2015, 119, 6188-6194.	1.1	33
261	Dynamics of Water Dissociative Chemisorption on Ni(111): Effects of Impact Sites and Incident Angles. Physical Review Letters, 2015, 114, 166101.	2.9	90
262	Near Spectroscopically Accurate Ab Initio Potential Energy Surface for NH ₄ ⁺ and Variational Calculations of Low-Lying Vibrational Levels. Journal of Physical Chemistry A, 2015, 119, 3400-3406.	1.1	10
263	From ab Initio Potential Energy Surfaces to State-Resolved Reactivities: X + H2O ↔ HX + OH [X = F, Cl, and O(3P)] Reactions. Journal of Physical Chemistry A, 2015, 119, 4667-4687.	1.1	90
264	Bond-Selective and Mode-Specific Dissociation of CH ₃ D and CH ₂ D ₂ on Pt(111). Journal of Physical Chemistry A, 2015, 119, 12442-12448.	1.1	29
265	Six-dimensional quantum dynamics of dissociative chemisorption of H2 on Co(0001) on an accurate global potential energy surface. Physical Chemistry Chemical Physics, 2015, 17, 23346-23355.	1.3	23
266	State-to-state reaction dynamics of 18O+32O2 studied by a time-dependent quantum wavepacket method. Journal of Chemical Physics, 2015, 142, 064308.	1.2	41
267	Selected-ion flow tube temperature-dependent measurements for the reactions of O2+ with N atoms and N2+ with O atoms. Journal of Chemical Physics, 2015, 142, 154305.	1.2	9
268	Mode specificity in bond selective reactions F + HOD → HF + OD and DF + OH. Journal of Chemical Physics, 2015, 142, 174309.	1.2	16
269	Kinetic isotope effect of the 16O + 36O2 and 18O + 32O2 isotope exchange reactions: Dominant role of reactive resonances revealed by an accurate time-dependent quantum wavepacket study. Journal of Chemical Physics, 2015, 142, 174312.	1.2	70
270	A permutationally invariant full-dimensional <i>ab initio</i> potential energy surface for the abstraction and exchange channels of the H + CH4 system. Journal of Chemical Physics, 2015, 142, 204302.	1.2	71

#	Article	IF	CITATIONS
271	Final state-resolved mode specificity in HX + OH → X + H ₂ O (X = F and Cl) reactions: A quasi-classical trajectory study. Journal of Chemical Physics, 2015, 142, 084314.	1.2	27
272	Infrared spectrum of the simplest Criegee intermediate CH2OO at resolution 0.25 cmâ^'1 and new assignments of bands 2 <i>ν</i> 9 and <i>ν</i> 5. Journal of Chemical Physics, 2015, 142, 214301.	1.2	37
273	Ring-Polymer Molecular Dynamics for the Prediction of Low-Temperature Rates: An Investigation of the C(¹ D) + H ₂ Reaction. Journal of Physical Chemistry Letters, 2015, 6, 4194-4199.	2.1	69
274	Dynamical resonances in chemical reactions. National Science Review, 2015, 2, 252-253.	4.6	6
275	Insights into the bond-selective reaction of Cl + HOD(n _{OH}) → HCl + OD. Physical Chemistry Chemical Physics, 2015, 17, 4259-4267.	1.3	32
276	State-to-State Mode Specificity: Energy Sequestration and Flow Gated by Transition State. Journal of the American Chemical Society, 2015, 137, 15964-15970.	6.6	35
277	UV Absorption Spectrum and Photodissociation Channels of the Simplest Criegee Intermediate (CH ₂ OO). Journal of the American Chemical Society, 2015, 137, 50-53.	6.6	69
278	Full-Dimensional Quantum Dynamics of Vibrationally Mediated Photodissociation of NH ₃ and ND ₃ on Coupled Ab Initio Potential Energy Surfaces: Absorption Spectra and NH ₂ (Af ² A ₁)/NH ₂ (XIf ² B ₁) Branching Ratios. Journal of Physical Chemistry A, 2014, 118, 11926-11934.	1.1	30
279	A tribute to Guosen Yan. Theoretical Chemistry Accounts, 2014, 133, 1.	0.5	0
280	Effects of reactant rotational excitations on H2 + NH2 → H + NH3 reactivity. Journal of Chemical Physics, 2014, 141, 244311.	1.2	16
281	Six-dimensional quantum dynamics for dissociative chemisorption of H ₂ and D ₂ on Ag(111) on a permutation invariant potential energy surface. Physical Chemistry Chemical Physics, 2014, 16, 24704-24715.	1.3	59
282	Theoretical/experimental comparison of deep tunneling decay of quasi-bound H(D)OCO to H(D) + CO2. Journal of Chemical Physics, 2014, 141, 054304.	1.2	12
283	Prediction of Mode Specificity, Bond Selectivity, Normal Scaling, and Surface Lattice Effects in Water Dissociative Chemisorption on Several Metal Surfaces Using the Sudden Vector Projection Model. Journal of Physical Chemistry C, 2014, 118, 26851-26858.	1.5	29
284	Further Insight into the Reaction FeO ⁺ + H ₂ → Fe ⁺ + H ₂ O: Temperature Dependent Kinetics, Isotope Effects, and Statistical Modeling. Journal of Physical Chemistry A, 2014, 118, 6789-6797.	1.1	38
285	Calculation of state-to-state differential and integral cross sections for atom-diatom reactions with transition-state wave packets. Journal of Chemical Physics, 2014, 140, 234110.	1.2	31
286	Rotational mode specificity in the Cl + CHD3 → HCl + CD3 reaction. Journal of Chemical Physics, 2014, 141, 074310.	1.2	75
287	A Full-Dimensional Global Potential Energy Surface of H ₃ O ⁺ (A£ ³ A) for the OH ⁺ (XÌf ³ Σ ^{â€"}) + H ₂ (XÌf ¹ Σ _g ⁺) â†' H(² S) + H ₂ O ⁺ (XÌf ² B ₁) Reaction. Journal of Physical Chemistry	1.1	25
288	Product fine-structure resolved photodissociation dynamics: The A band of H2O. Journal of Chemical Physics, 2014, 140, 024310.	1.2	22

#	Article	IF	CITATIONS
289	Communication: The origin of rotational enhancement effect for the reaction of H2O+ + H2 (D2). Journal of Chemical Physics, 2014, 140, 011102.	1.2	46
290	Calculation of the state-to-state <i>S</i> -matrix for tetra-atomic reactions with transition-state wave packets: H2/D2 + OH â†' H/D + H2O/HOD. Journal of Chemical Physics, 2014, 141, 154112.	1.2	31
291	The non-statistical dynamics of the 18O + 32O2 isotope exchange reaction at two energies. Journal of Chemical Physics, 2014, 141, 064311.	1.2	22
292	A nine-dimensional <i>ab initio</i> global potential energy surface for the H2O+ + H2 → H3O+ + H reaction. Journal of Chemical Physics, 2014, 140, 224313.	1.2	38
293	Crystal structures of two new Cu(II) complexes. Journal of Structural Chemistry, 2014, 55, 1101-1105.	0.3	2
294	Vibrationally Promoted Dissociation of Water on Ni(111). Science, 2014, 344, 504-507.	6.0	175
295	Quantum and quasi-classical dynamics of the OH + CO → H + CO2 reaction on a new permutationally invariant neural network potential energy surface. Journal of Chemical Physics, 2014, 140, 044327.	1.2	60
296	Imaging Dynamics on the F + H ₂ O → HF + OH Potential Energy Surfaces from Wells to Barriers. Science, 2014, 343, 396-399.	6.0	93
297	Experimental and Theoretical Kinetics for the H ₂ O ⁺ + H ₂ /D ₂ â†' H ₃ O ⁺ /H ₂ DO ⁺ + H/D Reactions: Observation of the Rotational Effect in the Temperature Dependence. Journal of Physical Chemistry A. 2014. 118. 11485-11489.	1.1	16
298	Permutation invariant polynomial neural network approach to fitting potential energy surfaces. III. Molecule-surface interactions. Journal of Chemical Physics, 2014, 141, 034109.	1.2	120
299	Full-dimensional characterization of photoelectron spectra of HOCOâ^' and DOCOâ^' and tunneling facilitated decay of HOCO prepared by anion photodetachment. Journal of Chemical Physics, 2014, 140, 184314.	1.2	20
300	Hemibond complexes between H2S and free radicals (F, Cl, Br, and OH). Theoretical Chemistry Accounts, 2014, 133, 1.	0.5	9
301	Mode specificity in the HF + OH → F + H2O reaction. Journal of Chemical Physics, 2014, 141, 164316.	1.2	19
302	An experimental and theoretical investigation of the N(⁴ S) + C ₂ (¹ Σ _g ⁺) reaction at low temperature. Physical Chemistry Chemical Physics, 2014, 16, 14212-14219.	1.3	17
303	Quantum mechanical/molecular mechanical studies of zinc hydrolases. International Reviews in Physical Chemistry, 2014, 33, 1-41.	0.9	22
304	The Sudden Vector Projection Model for Reactivity: Mode Specificity and Bond Selectivity Made Simple. Accounts of Chemical Research, 2014, 47, 3679-3685.	7.6	196
305	Nine-dimensional quantum dynamics study of the H ₂ + NH ₂ → H + NH ₃ reaction: a rigorous test of the sudden vector projection model. Physical Chemistry Chemical Physics, 2014, 16, 17770.	1.3	22
306	A nine-dimensional global potential energy surface for NH ₄ (X ² A ₁) and kinetics studies on the H + NH ₃ ↔ H ₂ + NH ₂ reaction. Physical Chemistry Chemical Physics, 2014, 16, 6753-6763.	1.3	52

#	Article	IF	CITATIONS
307	Spatially Resolving Ordered and Disordered Conformers and Photocurrent Generation in Intercalated Conjugated Polymer/Fullerene Blend Solar Cells. Chemistry of Materials, 2014, 26, 4395-4404.	3.2	30
308	Effects of reactant rotation on the dynamics of the OH + CH4 → H2O + CH3 reaction: A six-dimensional study. Journal of Chemical Physics, 2014, 140, 084307.	1.2	40
309	Quantum Rate Coefficients and Kinetic Isotope Effect for the Reaction Cl + CH ₄ → HCl + CH ₃ from Ring Polymer Molecular Dynamics. Journal of Physical Chemistry A, 2014, 118, 1989-1996.	1.1	53
310	Full-Dimensional Quantum State-to-State Nonadiabatic Dynamics for Photodissociation of Ammonia in its <i>A</i> -Band. Journal of Physical Chemistry Letters, 2014, 5, 1055-1060.	2.1	50
311	Communication: Rigorous quantum dynamics of O + O2 exchange reactions on an <i>ab initio</i> potential energy surface substantiate the negative temperature dependence of rate coefficients. Journal of Chemical Physics, 2014, 141, 081102.	1.2	34
312	Effects of reactant rotational excitation on reactivity: Perspectives from the sudden limit. Journal of Chemical Physics, 2014, 140, 034112.	1.2	49
313	Ring-Polymer Molecular Dynamics Rate Coefficient Calculations for Insertion Reactions: X + H ₂ → HX + H (X = N, O). Journal of Physical Chemistry Letters, 2014, 5, 700-705.	2.1	49
314	Low-temperature carbon monoxide oxidation catalysed by regenerable atomically dispersed palladium on alumina. Nature Communications, 2014, 5, 4885.	5.8	498
315	High-Level, First-Principles, Full-Dimensional Quantum Calculation of the Ro-vibrational Spectrum of the Simplest Criegee Intermediate (CH ₂ OO). Journal of Physical Chemistry Letters, 2014, 5, 2364-2369.	2.1	86
316	A comparison study of the HÂ+ÂCH4 and HÂ+ÂSiH4 reactions with eight-dimensional quantum dynamics: normal mode versus local mode in the reactant molecule vibration. Theoretical Chemistry Accounts, 2014, 133, 1.	0.5	6
317	Mode Specificity and Product Energy Disposal in Unimolecular Reactions: Insights from the Sudden Vector Projection Model. Journal of Physical Chemistry A, 2014, 118, 2419-2425.	1.1	29
318	Activation of Methane by FeO ⁺ : Determining Reaction Pathways through Temperature-Dependent Kinetics and Statistical Modeling. Journal of Physical Chemistry A, 2014, 118, 2029-2039.	1.1	46
319	Mode Specificity, Bond Selectivity, and Product Energy Disposal in X + CH ₄ /CHD ₃ (X=H, F, O(³ P), Cl, and OH) Hydrogen Abstraction Reactions: Perspective from Sudden Vector Projection Model. Journal of the Chinese Chemical Society, 2014, 61, 847-859.	0.8	43
320	Toward spectroscopically accurate global <i>ab initio</i> potential energy surface for the acetylene-vinylidene isomerization. Journal of Chemical Physics, 2014, 141, 244312.	1.2	28
321	Ring-polymer molecular dynamics: Rate coefficient calculations for energetically symmetric (near) Tj ETQq1 Physics, 2014, 141, 244103.	l 0.784314 rgB 1.2	T /Overlock 49
322	Atomistic simulations of an antimicrobial molecule interacting with a model bacterial membrane. Theoretical Chemistry Accounts, 2013, 132, 1.	0.5	6
323	The effect of 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane charge transfer dopants on the conformation and aggregation of poly(3-hexylthiophene). Journal of Materials Chemistry C, 2013, 1, 5638.	2.7	108
324	State-to-state quantum dynamics of the F + HCl (vi = 0, ji = 0) → HF(vf, jf) + Cl reaction on the ground state potential energy surface. Physical Chemistry Chemical Physics, 2013, 15, 15347.	1.3	15

#	Article	IF	CITATIONS
325	First-Principles Investigations of Metal (Cu, Ag, Au, Pt, Rh, Pd, Fe, Co, and Ir) Doped Hexagonal Boron Nitride Nanosheets: Stability and Catalysis of CO Oxidation. Journal of Physical Chemistry C, 2013, 117, 17319-17326.	1.5	300
326	Low temperature rate constants for the N(4S) + CH(X2Îr) reaction. Implications for N2 formation cycles in dense interstellar clouds. Physical Chemistry Chemical Physics, 2013, 15, 13888.	1.3	34
327	CO Hydrogenation on Pd(111): Competition between Fischer–Tropsch and Oxygenate Synthesis Pathways. Journal of Physical Chemistry C, 2013, 117, 14667-14676.	1.5	30
328	Ring Polymer Molecular Dynamics Calculations of Thermal Rate Constants for the O(³ P) + CH ₄ → OH + CH ₃ Reaction: Contributions of Quantum Effects. Journal of Physical Chemistry Letters, 2013, 4, 48-52.	2.1	68
329	<i>Ab initio</i> determination of potential energy surfaces for the first two UV absorption bands of SO2. Journal of Chemical Physics, 2013, 139, 014305.	1.2	43
330	Control of Mode/Bond Selectivity and Product Energy Disposal by the Transition State: X + H ₂ O (X = H, F, O(³ P), and Cl) Reactions. Journal of the American Chemical Society, 2013, 135, 15251-15256.	6.6	124
331	Permutation invariant polynomial neural network approach to fitting potential energy surfaces. Journal of Chemical Physics, 2013, 139, 054112.	1.2	393
332	Quasiclassical Trajectory Studies of the O(³ P) + CX ₄ (<i>v</i> _{<i>k</i>} = 0, 1) â†' OX(<i>v</i>) + CX ₃ (<i>n</i> ₁ <i>n</i> ₂ <i>n</i> ₃ <i>n</i> ₄) [X = H and D] Reactions on an Ab Initio Potential Energy Surface. Journal of Physical Chemistry A, 2013,	1.1	41
333	Communication: Full dimensional quantum rate coefficients and kinetic isotope effects from ring polymer molecular dynamics for a seven-atom reaction OH + CH4 → CH3 + H2O. Journal of Chemical Physics, 2013, 138, 221103.	1.2	71
334	The CO oxidation mechanism and reactivity on PdZn alloys. Physical Chemistry Chemical Physics, 2013, 15, 7768.	1.3	55
335	Vibrationally mediated bond selective dissociative chemisorption of HOD on Cu(111). Chemical Science, 2013, 4, 503-508.	3.7	60
336	Mode selectivity in methane dissociative chemisorption on Ni(111). Chemical Science, 2013, 4, 3249.	3.7	115
337	Iron cation catalyzed reduction of N2O by CO: gas-phase temperature dependent kinetics. Physical Chemistry Chemical Physics, 2013, 15, 11257.	1.3	26
338	A new approach toward transition state spectroscopy. Faraday Discussions, 2013, 163, 33.	1.6	39
339	Spin-orbit corrected full-dimensional potential energy surfaces for the two lowest-lying electronic states of FH2O and dynamics for the F + H2O → HF + OH reaction. Journal of Chemical Physics, 2013, 138, 074309.	1.2	43
340	State-to-State Photodissociation Dynamics of H ₂ 0 in the B-band: Competition between Two Coexisting Nonadiabatic Pathways. Journal of Physical Chemistry A, 2013, 117, 6940-6947.	1.1	37
341	Quantum Manifestation of Roaming in H + MgH → Mg + H ₂ : The Birth of Roaming Resonances. Journal of Physical Chemistry A, 2013, 117, 5052-5060.	1.1	41
342	Influence of Step Defects on Methanol Decomposition: Periodic Density Functional Studies on Pd(211) and Kinetic Monte Carlo Simulations. Journal of Physical Chemistry C, 2013, 117, 451-459.	1.5	28

#	Article	IF	CITATIONS
343	CO ₂ Vibrational State Distributions From Quasi-Classical Trajectory Studies of the HO + CO → H + CO ₂ Reaction and H + CO ₂ Inelastic Collision. Journal of Physical Chemistry A, 2013, 117, 11648-11654.	1.1	16
344	Reactant Vibrational Excitations Are More Effective than Translational Energy in Promoting an Early-Barrier Reaction FÂ+ÂH ₂ O → HFÂ+ÂOH. Journal of the American Chemical Society, 2013, 135, 982-985.	6.6	77
345	Enhancement of bimolecular reactivity by a pre-reaction van der Waals complex: the case of F + H2O → HF + HO. Chemical Science, 2013, 4, 629-632.	3.7	57
346	Accurate Determination of Barrier Height and Kinetics for the F + H ₂ 0 → HF + OH Reaction. Journal of Physical Chemistry A, 2013, 117, 8864-8872.	1.1	53
347	Kinetic and dynamic studies of the Cl(2 <i>P</i> u) + H2O(\$ilde X\$XÌf1 <i>A</i> 1) → HCl(\$ilde X\$XÌf1Σ+) + OH(\$ilde X\$XÌf2Î) reaction on an <i>ab initio</i> based full-dimensional global potential energy surface of the ground electronic state of ClH2O. Journal of Chemical Physics, 2013, 139, 074302.	1.2	42
348	Mode and Bond Selectivities in Methane Dissociative Chemisorption: Quasi-Classical Trajectory Studies on Twelve-Dimensional Potential Energy Surface. Journal of Physical Chemistry C, 2013, 117, 16127-16135.	1.5	66
349	High CO2 Selectivity of ZnO Powder Catalysts for Methanol Steam Reforming. Journal of Physical Chemistry C, 2013, 117, 6493-6503.	1.5	27
350	Quasi-classical Trajectory Study of F+H2O→HF+OH Reaction: Influence of Barrier Height, Reactant Rotational Excitation, and Isotopic Substitution. Chinese Journal of Chemical Physics, 2013, 26, 627-634.	0.6	29
351	Effects of reactant internal excitation and orientation on dissociative chemisorption of H2O on Cu(111): Quasi-seven-dimensional quantum dynamics on a refined potential energy surface. Journal of Chemical Physics, 2013, 138, 044704.	1.2	57
352	Communication: Covalent nature of Xâ∢H2O (X = F, Cl, and Br) interactions. Journal of Chemical Physics, 2013, 138, 141102.	1.2	50
353	Relative efficacy of vibrational vs. translational excitation in promoting atom-diatom reactivity: Rigorous examination of Polanyi's rules and proposition of sudden vector projection (SVP) model. Journal of Chemical Physics, 2013, 138, 234104.	1.2	166
354	Rate coefficients and kinetic isotope effects of the X + CH4 → CH3 + HX (X = H, D, Mu) reactions from ring polymer molecular dynamics. Journal of Chemical Physics, 2013, 138, 094307.	1.2	72
355	A new ab initio based global HOOH(13A″) potential energy surface for the O(3P) + H2O(X1A1) ↔ OH(X2Î) + OH(X2Î) reaction. Journal of Chemical Physics, 2013, 138, 194304.	1.2	24
356	Temperature dependences for the reactions of O2â''and Oâ''with N and O atoms in a selected-ion flow tube instrument. Journal of Chemical Physics, 2013, 139, 144302.	1.2	17
357	Communication: An accurate global potential energy surface for the ground electronic state of ozone. Journal of Chemical Physics, 2013, 139, 201103.	1.2	103
358	Vibronic origin of sulfur mass-independent isotope effect in photoexcitation of SO ₂ and the implications to the early earth's atmosphere. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 17697-17702.	3.3	88
359	State-to-state quantum dynamics of the O(3 <i>P</i>) + NH(<i>X</i> 3룉^') reaction on the three lowest-lying electronic states of HNO/HON. Journal of Chemical Physics, 2013, 138, 024308.	1.2	8
360	Competition between abstraction and exchange channels in H + HCN reaction: Full-dimensional quantum dynamics. Journal of Chemical Physics, 2013, 139, 224310.	1.2	13

#	Article	IF	CITATIONS
361	Permutation invariant polynomial neural network approach to fitting potential energy surfaces. II. Four-atom systems. Journal of Chemical Physics, 2013, 139, 204103.	1.2	269
362	State-to-state quantum dynamics of the N(4 <i>S</i>) + CH(<i>X</i> 2Î) → CN(<i>X</i> 2Σ+, <i>A</i> 2Î) H(2 <i>S</i>) reactions. Journal of Chemical Physics, 2013, 139, 124313.	İ .2	7
363	State-to-state photodissociation dynamics of triatomic molecules: H2O in the <i>B</i> band. Journal of Chemical Physics, 2012, 136, 034302.	1.2	56
364	Quasi-classical trajectory study of the H + CO2 → HO + CO reaction on a new ab initio based potential energy surface. Journal of Chemical Physics, 2012, 137, 024308.	1.2	23
365	First principles determination of the NH2/ND2(\$skew4ilde A, skew3ilde X\$AÌf,XÌf) branching ratios for photodissociation of NH3/ND3 via full-dimensional quantum dynamics based on a new quasi-diabatic representation of coupled <i>ab initio</i> potential energy surfaces. Journal of Chemical Physics. 2012. 137. 22A541.	1.2	41
366	lsotope effect in normal-to-local transition of acetylene bending modes. Journal of Chemical Physics, 2012, 136, 014304.	1.2	9
367	Enhancing dissociative chemisorption of H ₂ O on Cu(111) via vibrational excitation. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 10224-10227.	3.3	89
368	Computational determination of the <i>Ãf</i> state absorption spectrum of NH3 and of ND3 using a new quasi-diabatic representation of the \$skew3ilde{X}\$XIf and <i>Ãf</i> states and full six-dimensional quantum dynamics. Journal of Chemical Physics, 2012, 136, 234301.	1.2	46
369	Low temperature rate constants for the N + CN â†' N2 + C reaction: two-dimensional quantum capture calculations on an accurate potential energy surface. Physical Chemistry Chemical Physics, 2012, 14, 12090 Tunneling Facilitated Dissociation to <mml:math <="" td="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><td>1.3</td><td>15</td></mml:math>	1.3	15
370	display="inline"> <mml:mi mathvariant="bold">H</mml:mi> <mml:mo mathvariant="bold">+<mml:msub><mml:mi>CO</mml:mi><mml:mn>2</mml:mn></mml:msub>xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msup><mml:mi>HOCO</mml:mi><mml:mo>â^²</mml:mo></mml:msup>Phot</mml:mo 	l:math>in 2.9 odetachn	1 <mml:math 28 nent.</mml:math
371	Physical Review Letters, 2012, 109, 063202. An <i>ab initio</i> based full-dimensional global potential energy surface for FH2O(X2A′) and dynamics for the F + H2O → HF + HO reaction. Journal of Chemical Physics, 2012, 137, 094304.	1.2	70
372	Mode Selectivity for a "Central―Barrier Reaction: Eight-Dimensional Quantum Studies of the O(³ P) + CH ₄ → OH + CH ₃ Reaction on an Ab Initio Potential Energy Surface. Journal of Physical Chemistry Letters, 2012, 3, 3776-3780.	2.1	87
373	Communication: A chemically accurate global potential energy surface for the HO + CO → H + CO2 reaction. Journal of Chemical Physics, 2012, 136, 041103.	1.2	102
374	Quantum Dynamics of the HO + CO → H + CO2 Reaction on an Accurate Potential Energy Surface. Journal of Physical Chemistry Letters, 2012, 3, 2482-2486.	2.1	40
375	Quasi-Classical Trajectory Study of the HO + CO → H + CO ₂ Reaction on a New ab Initio Based Potential Energy Surface. Journal of Physical Chemistry A, 2012, 116, 5057-5067.	1.1	51
376	Quantum dynamics of complex-forming bimolecular reactions. International Reviews in Physical Chemistry, 2012, 31, 1-68.	0.9	216
377	First-principles study of the methyl formate pathway of methanol steam reforming on PdZn(111) with comparison to Cu(111). Journal of Molecular Catalysis A, 2012, 356, 165-170.	4.8	30
378	Theoretical characterization of reaction dynamics in the gas phase and at interfaces. Theoretical Chemistry Accounts, 2012, 131, 1.	0.5	3

#	Article	IF	CITATIONS
379	Theoretical characterization of reaction dynamics in the gas phase and at interfaces. , 2012, , 45-47.		0
380	Insights into the Phosphoryl Transfer Mechanism of Cyclin-Dependent Protein Kinases from ab Initio QM/MM Free-Energy Studies. Journal of Physical Chemistry B, 2011, 115, 13713-13722.	1.2	32
381	pH-Dependent Reactivity for Glycyl- <scp>l</scp> -tyrosine in Carboxypeptidase-A-Catalyzed Hydrolysis. Journal of Physical Chemistry B, 2011, 115, 10360-10367.	1.2	12
382	On the Mechanism of Dimethylarginine Dimethylaminohydrolase Inactivation by 4-Halopyridines. Journal of the American Chemical Society, 2011, 133, 10951-10959.	6.6	19
383	Calculation of multiple initial state selected reaction probabilities from Chebyshev flux-flux correlation functions: Influence of reactant internal excitations on H + H2O â†' OH + H2. Journal of Chemical Physics, 2011, 135, 084112.	1.2	47
384	Ab Initio QM/MM Free-Energy Studies of Arginine Deiminase Catalysis: The Protonation State of the Cys Nucleophile. Journal of Physical Chemistry B, 2011, 115, 3725-3733.	1.2	22
385	Pathways of Methanol Steam Reforming on PdZn and Comparison with Cu. Journal of Physical Chemistry C, 2011, 115, 20583-20589.	1.5	60
386	Inhibitor and Substrate Binding by Angiotensin-Converting Enzyme: Quantum Mechanical/Molecular Mechanical Molecular Dynamics Studies. Journal of Chemical Information and Modeling, 2011, 51, 1074-1082.	2.5	55
387	Molecular Mechanism for Eliminylation, a Newly Discovered Post-Translational Modification. Journal of the American Chemical Society, 2011, 133, 11103-11105.	6.6	28
388	Characterization of Purified New Delhi Metallo-β-lactamase-1. Biochemistry, 2011, 50, 10102-10113.	1.2	114
389	Pathways for methanol steam reforming involving adsorbed formaldehyde and hydroxyl intermediates on Cu(111): density functional theory studies. Physical Chemistry Chemical Physics, 2011, 13, 9622.	1.3	61
390	Quantum and quasiclassical state-to-state dynamics of the NH + H reaction: Competition between abstraction and exchange channels. Journal of Chemical Physics, 2011, 134, 134303.	1.2	24
391	Methyl Formate Pathway in Methanol Steam Reforming on Copper: Density Functional Calculations. ACS Catalysis, 2011, 1, 1263-1271.	5.5	47
392	State-to-state quantum dynamics of the H(2S) + O2(ã1Δg) → O(3P)+OH(X̃2Î) reaction on the first excited state of HO2(Ã2A′). Physical Chemistry Chemical Physics, 2011, 13, 8407.	1.3	17
393	Communication: State-to-state differential cross sections for H2O(f) photodissociation. Journal of Chemical Physics, 2011, 134, 231103.	1.2	23
394	Full-dimensional quantum state resolved predissociation dynamics of HCO2 prepared by photodetaching HCO2â^'. Chemical Physics Letters, 2011, 511, 193-195.	1.2	16
395	Revealing Atom-Radical Reactivity at Low Temperature Through the N + OH Reaction. Science, 2011, 334, 1538-1541.	6.0	68
396	Communication: Highly accurate ozone formation potential and implications for kinetics. Journal of Chemical Physics, 2011, 135, 081102.	1.2	83

#	Article	IF	CITATIONS
397	Quantum mechanical/molecular mechanical study of anthrax lethal factor catalysis. Theoretical Chemistry Accounts, 2011, 128, 83-90.	0.5	9
398	Superfluid response of 4HeN–N2O clusters probed by path integral Monte Carlo simulations. Journal of Molecular Spectroscopy, 2011, 267, 136-143.	0.4	15
399	Initial steps in methanol steam reforming on PdZn and ZnO surfaces: Density functional theory studies. Surface Science, 2011, 605, 750-759.	0.8	58
400	A global <i>ab initio</i> potential energy surface for HNO (<i>a</i> 3 <i>A</i> ″) and quantum mechanical studies of vibrational states and reaction dynamics. Journal of Chemical Physics, 2011, 134, 194309.	1.2	25
401	State-to-state quantum dynamics of the N(4 <i>S</i>) + OH(<i>X</i> 2Î) → H(2 <i>S</i>) + NO(<i>X</i> reaction. Journal of Chemical Physics, 2011, 135, 164312.	92ĵ) ₂	12
402	State-to-state quantum dynamics of the O(P3)+OH(Î2)→H(S2)+O2(Σ3gâ^') reaction. Journal of Chemical Physics, 2010, 133, 054302.	1.2	32
403	Catalysis of Carboxypeptidase A: Promoted-Water versus Nucleophilic Pathways. Journal of Physical Chemistry B, 2010, 114, 9259-9267.	1.2	33
404	Non-Bornâ^'Oppenheimer State-to-State Dynamics of the N(² D) + H ₂ → NH(Xlƒ ³ l£ ^{â^'}) + H Reaction: Influence of the Rennerâ^'Teller Coupling. Journal of Physical Chemistry A, 2010, 114, 9655-9661.	1.1	30
405	Nonadiabatic Dynamics of <i>$\tilde{A}f$ </i> -State Photodissociation of Ammonia: A Four-Dimensional Wave Packet Study. Journal of Physical Chemistry A, 2010, 114, 3121-3126.	1.1	16
406	QM/MM Studies of Monozinc β-Lactamase CphA Suggest That the Crystal Structure of an Enzymeâ`'Intermediate Complex Represents a Minor Pathway. Journal of the American Chemical Society, 2010, 132, 17986-17988.	6.6	62
407	Clobal potential energy surface, vibrational spectrum, and reaction dynamics of the first excited (Ã A2′) state of HO2. Journal of Chemical Physics, 2010, 133, 144306.	1.2	34
408	State-to-state quantum dynamics of OÂ+ÂO ₂ isotope exchange reactions reveals nonstatistical behavior at atmospheric conditions. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 555-558.	3.3	69
409	Extraction of state-to-state reactive scattering attributes from wave packet in reactant Jacobi coordinates. Journal of Chemical Physics, 2010, 132, 084112.	1.2	119
410	Comparison of second-order split operator and Chebyshev propagator in wave packet based state-to-state reactive scattering calculations. Journal of Chemical Physics, 2009, 130, 174102.	1.2	95
411	Quantum Mechanical/Molecular Mechanical and Density Functional Theory Studies of a Prototypical Zinc Peptidase (Carboxypeptidase A) Suggest a General Acidâ^'General Base Mechanism. Journal of the American Chemical Society, 2009, 131, 9780-9788.	6.6	80
412	Active-Site Dynamics of SpvC Virulence Factor from Salmonella typhimurium and Density Functional Theory Study of Phosphothreonine Lyase Catalysis. Journal of Physical Chemistry B, 2009, 113, 15327-15333.	1.2	11
413	Effects of reactant rotational excitation on H + O2→ OH + O reaction rate constant: quantum wave packet, quasi-classical trajectory and phase space theory calculations. Physical Chemistry Chemical Physics, 2009, 11, 4715.	1.3	18
414	NH(X3Σ)+H/D(S2)→H(S2)+NH/ND(X3Σ) exchange reactions: State-to-state quantum scattering and applicability of statistical model. Journal of Chemical Physics, 2009, 131, 124313.	1.2	16

#	Article	IF	CITATIONS
415	An <i>ab initio</i> global potential-energy surface for NH2(A2A′) and vibrational spectrum of the Renner–Teller A2A′-X2A″ system. Journal of Chemical Physics, 2009, 130, 184307.	1.2	31
416	Energy Localization in Molecules, Bifurcation Phenomena, and Their Spectroscopic Signatures: The Global View. Chemical Reviews, 2009, 109, 4248-4271.	23.0	72
417	Ab Initio Potential Energy Surfaces for the Ground (X̃1A′) and Excited (Ã1A′′) Electronic States of HGe and the Absorption and Emission Spectra of HGeBr/DGeBr. Journal of Physical Chemistry A, 2009, 113, 7314-7321.	2Br 1.1	3
418	O + OH → O 2 + H : A key reaction for interstellar chemistry. New theoretical results and comparison with experiment. Journal of Chemical Physics, 2009, 131, 221104.	1.2	55
419	Adiabatic and Nonadiabatic State-to-State Quantum Dynamics for O(¹ D) + H ₂ (X ¹ Σ _{<i>g</i>} ⁺ , ï _{<i>i</i>} =) Tj ETQq1 1 0.7 + H(² S) Reaction. Journal of Physical Chemistry A. 2009. 113. 4285-4293.	84314 rgl 1.1	3T ₂ Overlock
420	Quantum dynamics of C(3P)+OH(X2Î)→H(2S)+CO(X1Σ+) reaction. Chemical Physics Letters, 2008, 453, 140-14	141.2	17
421	Theoretical emission spectra of HNC(<mml:math)="" etqq1<="" td="" tj="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><td>1 0.7843 1.2</td><td>14 rgBT /Ov 2</td></mml:math>	1 0.7843 1.2	14 rgBT /Ov 2
422	Quasiclassical trajectory scattering calculations for the OH+O→H+O2 reaction: Cross sections and rate constants. Chemical Physics Letters, 2008, 462, 53-57.	1.2	40
423	Mechanistic insights into the H+O2→OH+O reaction from quasi-classical trajectory studies on a new ab initio potential energy surface. Chemical Physics, 2008, 349, 181-187.	0.9	18
424	Ab Initio QM/MM Studies of the Phosphoryl Transfer Reaction Catalyzed by PEP Mutase Suggest a Dissociative Metaphosphate Transition State. Journal of Physical Chemistry B, 2008, 112, 4102-4108.	1.2	11
425	The Electrostatic Driving Force for Nucleophilic Catalysis in l-Arginine Deiminase: A Combined Experimental and Theoretical Study. Biochemistry, 2008, 47, 4721-4732.	1.2	22
426	Fully Coriolis-Coupled Quantum Studies of the H + O ₂ (ï <i>_i</i> = 0â^2,) Tj ETQq0 0 Cross Sections and Rate Constants. Journal of Physical Chemistry A, 2008, 112, 602-611.	0 rgBT /Ov 1.1	verlock 10 Tr 50
427	Mechanism of the Quorum-Quenching Lactonase (AiiA) from <i>Bacillus thuringiensis</i> . 2. Substrate Modeling and Active Site Mutations. Biochemistry, 2008, 47, 7715-7725.	1.2	87
428	State-to-State Dynamics of H + O2 Reaction, Evidence for Nonstatistical Behavior. Journal of the American Chemical Society, 2008, 130, 14962-14963.	6.6	52
429	Proton Transfer in Carbonic Anhydrase Is Controlled by Electrostatics Rather than the Orientation of the Acceptor. Biochemistry, 2008, 47, 2369-2378.	1.2	79
430	Full-dimensional quantum dynamics of AÌ f -state photodissociation of ammonia: Absorption spectra. Journal of Chemical Physics, 2008, 129, 154311.	1.2	29
431	A new <i>ab initio</i> potential-energy surface for NH2(XA″2) and quantum studies of NH2 vibrational spectrum and rate constant for the N(D2)+H2→NH+H reaction. Journal of Chemical Physics, 2008, 128, 224316.	1.2	35
432	Accurate quantum mechanical calculations of differential and integral cross sections and rate constant for the O+OH reaction using an <i>ab initio</i> potential energy surface. Journal of Chemical Physics, 2008, 128, 014303.	1.2	60

#	Article	IF	CITATIONS
433	Path integral Monte Carlo study of CO2 solvation in He4 clusters. Journal of Chemical Physics, 2008, 128, 224513.	1.2	17
434	Energy dependence of differential and integral cross sections for O(D1)+H2(ïi=,ji=)→OH(ïf,jf)+H reaction. Journal of Chemical Physics, 2008, 129, 124311.	1.2	22
435	Ab initio potential energy surfaces for both the ground (X̃ A1′) and excited (Ã A1″) electronic st HGeCl and the absorption and emission spectra of HGeCl/DGeCl. Journal of Chemical Physics, 2008, 129, 154313.	ates of 1.2	5
436	New Theoretical Results Concerning the Interstellar Abundance of Molecular Oxygen. Astrophysical Journal, 2008, 681, 1318-1326.	1.6	30
437	Molecular Dynamics and Density Functional Studies of Substrate Binding and Catalysis of Arginine Deiminase. Journal of Physical Chemistry B, 2007, 111, 3267-3273.	1.2	10
438	Rate constant for OH(Î2)+O(P3)→H(S2)+O2(Σgâ^'3) reaction on an improved ab initio potential energy surface and implications for the interstellar oxygen problem. Journal of Chemical Physics, 2007, 127, 024304.	1.2	56
439	Antibiotic Deactivation by a Dizinc β-Lactamase:  Mechanistic Insights from QM/MM and DFT Studies. Journal of the American Chemical Society, 2007, 129, 10814-10822.	6.6	85
440	Analysis of the HO2Vibrational Spectrum on an Accurate Ab Initio Potential Energy Surfaceâ€. Journal of Physical Chemistry A, 2007, 111, 10353-10361.	1.1	39
441	Supermolecule density functional calculations suggest a key role for solvent in alkaline hydrolysis of p-nitrophenyl phosphate. Chemical Communications, 2007, , 1638.	2.2	42
442	Differential and Integral Cross Sections for the H + O2→ OH + O Combustion Reaction. Journal of Physical Chemistry A, 2007, 111, 5349-5352.	1.1	44
443	Nonstatistical Behavior of Reactive Scattering in the 18O+32O2 Isotope Exchange Reaction. Journal of the American Chemical Society, 2007, 129, 2866-2870.	6.6	48
444	Inhibitor Binding by Metallo-β-lactamase IMP-1 fromPseudomonas aeruginosa: Quantum Mechanical/Molecular Mechanical Simulations. Journal of Physical Chemistry B, 2007, 111, 9986-9992.	1.2	16
445	Differential and Integral Cross Sections of the N(2D) + H2 → NH + H Reaction from Exact Quantum and Quasi-Classical Trajectory Calculations. Journal of Physical Chemistry A, 2007, 111, 2376-2384.	1.1	37
446	Antibiotic Binding to Dizinc β-Lactamase L1 fromStenotrophomonas maltophilia: SCC-DFTB/CHARMM and DFT Studiesâ€. Journal of Physical Chemistry A, 2007, 111, 5630-5636.	1.1	43
447	Global analytical potential energy surfaces for HO2(XÌfA″2) based on high-levelab initiocalculations. Journal of Chemical Physics, 2007, 126, 074315. Theoretical studies of amplimath altimg="si7 gif" display="inline" overflow="scroll"	1.2	45
448	xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:th="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML"	1.2	36
449	xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsev. Chemical Quantum Mechanical Rate Constants for H + O2â†" O + OH and H + O2â†' HO2Reactionsâ€. Journal of Physical Chemistry A, 2006, 110, 1534-1540.	1.1	41
450	Quantum state-to-state cross sections for atom-diatom reactions: A Chebyshev real wave-packet approach. Physical Review A, 2006, 74, .	1.0	100

#	Article	IF	CITATIONS
451	Quantum Statistical Study of O + O2Isotopic Exchange Reactions: Cross Sections and Rate Constantsâ€. Journal of Physical Chemistry A, 2006, 110, 5305-5311.	1.1	21
452	Quantum Dynamics of the H + O2→ O + OH Reaction on an Accurate ab Initio Potential Energy Surface. Journal of Physical Chemistry B, 2006, 110, 23641-23643.	1.2	42
453	Development of Effective Quantum Mechanical/Molecular Mechanical (QM/MM) Methods for Complex Biological Processes. Journal of Physical Chemistry B, 2006, 110, 6458-6469.	1.2	290
454	Contributions of Long-Range Electrostatic Interactions to 4-Chlorobenzoyl-CoA Dehalogenase Catalysis: A Combined Theoretical and Experimental Studyâ€. Biochemistry, 2006, 45, 102-112.	1.2	23
455	Kinetic Analysis of Pseudomonas aeruginosa Arginine Deiminase Mutants and Alternate Substrates Provides Insight into Structural Determinants of Function. Biochemistry, 2006, 45, 1162-1172.	1.2	58
456	Enantio- and Diastereoselective Michael Addition Reactions of Unmodified Aldehydes and Ketones with Nitroolefins Catalyzed by a Pyrrolidine Sulfonamide. Chemistry - A European Journal, 2006, 12, 4321-4332.	1.7	212
457	Exact quantum dynamics of N(D2)+H2→NH+H reaction: Cross-sections, rate constants, and dependence on reactant rotation. Journal of Chemical Physics, 2006, 124, 031101.	1.2	46
458	Catalytic Mechanism of Class B2 Metallo-β-lactamase. Journal of Biological Chemistry, 2006, 281, 8740-8747.	1.6	66
459	Revelation of non-statistical behavior in HO2 vibration by a newab initiopotential energy surface. Journal of Chemical Physics, 2006, 125, 091103.	1.2	28
460	Direct, Facile Aldehyde and Ketone α-Selenenylation Reactions Promoted by L-Prolinamide and Pyrrolidine Sulfonamide Organocatalysts ChemInform, 2005, 36, no.	0.1	0
461	Quantum statistical and wave packet studies of insertion reactions of S(D1) with H2, HD, and D2. Journal of Chemical Physics, 2005, 122, 074304.	1.2	71
462	Solvent Effect on Concertedness of the Transition State in the Hydrolysis ofp-Nitrophenyl Acetate. Organic Letters, 2005, 7, 2093-2095.	2.4	31
463	Antibiotic Binding to Monozinc CphA β-Lactamase fromAeromonashydropila: Quantum Mechanical/Molecular Mechanical and Density Functional Theory Studies. Journal of Medicinal Chemistry, 2005, 48, 6679-6689.	2.9	46
464	Theoretical Study of General Base-Catalyzed Hydrolysis of Aryl Esters and Implications for Enzymatic Reactions. Journal of Physical Chemistry B, 2005, 109, 5259-5266.	1.2	11
465	A reliableab initiopotential energy surface and vibrational states for the ground electronic state of HgH2(Xl̂£g+1). Journal of Chemical Physics, 2005, 122, 144314.	1.2	7
466	Electrostatic influence of active-site waters on the nucleophilic aromatic substitution catalyzed by 4-chlorobenzoyl-CoA dehalogenase. FEBS Letters, 2005, 579, 4249-4253.	1.3	7
467	Reactivity of Metaphosphate and Thiometaphosphate in Water:  A DFT Study. Journal of Physical Chemistry A, 2005, 109, 11295-11303.	1.1	14
468	Theoretical Studies of Dissociative Phosphoryl Transfer in Interconversion of Phosphoenolpyruvate to Phosphonopyruvate: A Solvent Effects, Thio Effects, and Implications for Enzymatic Reactions. Journal of Physical Chemistry B, 2005, 109, 13827-13834.	1.2	20

#	Article	IF	CITATIONS
469	Resonances of CH2(aÌfA11) and their roles in unimolecular and bimolecular reactions. Journal of Chemical Physics, 2005, 122, 124308.	1.2	15
470	Direct, Facile Aldehyde and Ketone α-Selenenylation Reactions Promoted byl-Prolinamide and Pyrrolidine Sulfonamide Organocatalysts. Journal of Organic Chemistry, 2005, 70, 5678-5687.	1.7	87
471	A new ab initio potential-energy surface of HO2(X2A″) and quantum studies of HO2 vibrational spectrum and rate constants for the H+O2↔O+OH reactions. Journal of Chemical Physics, 2005, 122, 244305.	1.2	106
472	Reactions of C(1D) with H2 and its deuterated isotopomers, a wave packet study. Journal of Chemical Physics, 2004, 121, 1285-1292.	1.2	35
473	An ab initio potential energy surface and vibrational states of MgH2(1 1A′). Journal of Chemical Physics, 2004, 121, 4156-4163.	1.2	26
474	A wave packet based statistical approach to complex-forming reactions. Journal of Chemical Physics, 2004, 120, 9907-9910.	1.2	68
475	Quantum integral cross-section and rate constant of the O(1D)+H2 → OH+H reaction on a new potential energy surface. Chemical Physics Letters, 2004, 385, 193-197 A regular isomerization path among chaotic vibrational states of < mml:math altimg="si2.gif"	1.2	23
476	display= inline "overnow= scroll" xmins:xocs= http://www.elsevier.com/xmi/xocs/dtd xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML"	1.2	9
477	xmins:tb="http://www.elsevier.com/xmi/common/table/dtd" xmlns:sh="http://www.elsevier.com/xmi/co A QM/MM study of a nucleophilic aromatic substitution reaction catalyzed by 4-chlorobenzoyl-CoA dehalogenase. Chemical Communications, 2004, , 892.	2.2	10
478	An ab initio potential energy surface and predissociative resonances of HArF. Journal of Chemical Physics, 2004, 120, 4273-4280.	1.2	21
479	QM/MM Studies of the Enzyme-Catalyzed Dechlorination of 4-Chlorobenzoyl-CoA Provide Insight into Reaction Energetics. Journal of the American Chemical Society, 2004, 126, 13649-13658.	6.6	38
480	Quantum Wave Packet Studies of the C(1D) + H2→ CH + H Reaction: Integral Cross Section and Rate Constant. Journal of Physical Chemistry A, 2004, 108, 2141-2148.	1.1	91
481	Case Study of a Prototypical Elementary Insertion Reaction: C(1D) + H2→ CH + H. Journal of Physical Chemistry A, 2004, 108, 10066-10071.	1.1	51
482	Chebyshev Propagation and Applications to Scattering Problems. , 2004, , 217-229.		0
483	Effect of spectral range on convergence in Lanczos algorithm, a numerical study. Chemical Physics Letters, 2003, 369, 650-655.	1.2	11
484	A scaled ab initio potential energy surface for acetylene and vinylidene. Chemical Physics Letters, 2003, 377, 582-588.	1.2	30
485	Full-dimensional quantum wave packet study of collision-induced vibrational relaxation between para-H2. Chemical Physics, 2003, 289, 191-199.	0.9	27
486	Full-Dimensional Wave Packet Studies of Collisional Vibrational Relaxation of Both p- and o-H2. Journal of Physical Chemistry A, 2003, 107, 7197-7203.	1.1	16

#	Article	IF	CITATIONS
487	Exact quantum mechanical calculations of rovibrational energy levels of hydrogen peroxide (HOOH). Journal of Chemical Physics, 2003, 119, 5867-5873.	1.2	26
488	Quantum wave packet study of reactive and inelastic scattering between C(1D) and H2. Journal of Chemical Physics, 2003, 119, 11602-11608.	1.2	92
489	Probing highly excited vibrational eigenfunctions using a modified single Lanczos propagation method: Application to acetylene (HCCH). Journal of Chemical Physics, 2003, 118, 7273.	1.2	29
490	On the convergence scaling laws of Lanczos and Chebyshev recursion methods. Journal of Chemical Physics, 2003, 119, 5762-5764.	1.2	14
491	THEORETICAL STUDIES OF \$ilde{A}{}^1 A^{primeprime}oilde{X}{}^1 A^prime\$ RESONANCE EMISSION SPECTRA OF HCN/DCN USING SINGLE LANCZOS PROPAGATION METHOD. Journal of Theoretical and Computational Chemistry, 2003, 02, 639-648.	1.8	4
492	Theoretical study of predissociation dynamics of HCN/DCN in their first absorption bands. Journal of Chemical Physics, 2002, 116, 10626-10635.	1.2	26
493	Monte Carlo wave packet study of negative ion mediated vibrationally inelastic scattering of NO from the metal surface. Journal of Chemical Physics, 2002, 117, 4499-4508.	1.2	51
494	Direct calculation of cumulative reaction probabilities from Chebyshev correlation functions. Journal of Chemical Physics, 2002, 116, 6391-6396.	1.2	20
495	Full-dimensional quantum wave packet study of rotationally inelastic transitions in H2+H2 collision. Journal of Chemical Physics, 2002, 117, 5183-5191.	1.2	96
496	CALCULATION OF TRANSITION AMPLITUDES WITH A SINGLE LANCZOS PROPAGATION. Journal of Theoretical and Computational Chemistry, 2002, 01, 173-185.	1.8	36
497	Predissociation of HCN/DCN in Two Lowest-Lying Singlet Excited States:  Effect of Fermi Resonances on Spectra and Dynamics. Journal of Physical Chemistry A, 2002, 106, 10174-10183.	1.1	8
498	Quantum calculation of highly excited vibrational energy levels of on a new empirical potential energy surface and semiclassical analysis of 1:2 Fermi resonance. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2002, 58, 727-746.	2.0	17
499	Full-dimensional quantum calculations of vibrational energy levels of acetylene (HCCH) up to 13,000 cmâ~'1. Chemical Physics Letters, 2002, 365, 480-486.	1.2	27
500	Six-dimensional quantum calculations of highly excited vibrational energy levels of hydrogen peroxide and its deuterated isotopomers. Journal of Chemical Physics, 2001, 114, 4763-4774.	1.2	114
501	A single Lanczos propagation method for calculating transition amplitudes. II. Modified QL and symmetry adaptation. Journal of Chemical Physics, 2001, 114, 1467-1472.	1.2	104
502	Lanczos Approach to Molecular Spectroscopy without Explicit Calculation of Eigenfunctions. Journal of Computational Methods in Sciences and Engineering, 2001, 1, 251-265.	0.1	0
503	The Vibrational Level Spectrum of H2O(X̃1A′) on a Partridge–Schwenke Potential up to the Dissociation Limit. Journal of Molecular Spectroscopy, 2001, 210, 90-97.	0.4	33
504	A new ab initio potential energy surface of HCN(11A \hat{e}^3) and the predissociative resonances of HCN and DCN. Chemical Physics Letters, 2001, 345, 517-524.	1.2	12

#	Article	IF	CITATIONS
505	Efficient calculation of resonance positions and widths using doubled Chebyshev autocorrelation functions. Chemical Physics Letters, 2001, 347, 443-450.	1.2	16
506	Doubling of Chebyshev correlation function for calculating narrow resonances using low-storage filter diagonalization. Chemical Physics Letters, 2001, 336, 143-148.	1.2	19
507	Substrate conformational transitions in the active site of chorismate mutase: Their role in the catalytic mechanism. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 9032-9037.	3.3	97
508	Ab initio characterization of low-lying triplet state potential-energy surfaces and vibrational frequencies in the Wulf band of ozone. Journal of Chemical Physics, 2001, 115, 10404.	1.2	20
509	A single Lanczos propagation method for calculating transition amplitudes. III. S-matrix elements with a complex-symmetric Hamiltonian. Journal of Chemical Physics, 2001, 115, 9637-9643.	1.2	14
510	Corrugation induced rotational excitation in photon/electron-induced desorption of ammonia: A three-dimensional quantum study. Journal of Chemical Physics, 2001, 115, 3330-3335.	1.2	4
511	A combined experimental and theoretical study of resonance emission spectra of SO2($\hat{Cl}f$). Chemical Physics Letters, 2000, 320, 499-506.	1.2	18
512	Full-dimensional quantum calculation of the vibrational energy levels of hydrogen peroxide (HOOH). Chemical Physics Letters, 2000, 320, 567-574.	1.2	80
513	Absorption and resonance emission spectra of SO2($XIf1A1/CIf1B2$) calculated from ab initio potential energy and transition dipole moment surfaces. Chemical Physics Letters, 2000, 329, 503-510.	1.2	27
514	Barrier crossing in a dissipative environment: a reduced density matrix treatment of STM-induced atom transfer dynamics. Chemical Physics Letters, 2000, 317, 315-321.	1.2	6
515	Comparison of Chebyshev, Faber, and Lanczos propagation-based methods for calculating resonances. Journal of Chemical Physics, 2000, 112, 5263-5269.	1.2	42
516	Effect of vibrational relaxation on DIET: a density matrix treatment. Surface Science, 2000, 451, 7-11.	0.8	8
517	Dynamics of rare gas desorption from Pt(111) induced by collisions with photogenerated hot oxygen atoms. Surface Science, 2000, 447, 219-228.	0.8	0
518	Three-Dimensional Photodissociation Dynamics of Rotational State Selected Methyl Iodide. Journal of Physical Chemistry A, 2000, 104, 1009-1019.	1.1	57
519	Accurate ab initio near-equilibrium potential energy and dipole moment functions of the ground electronic state of ozone. Journal of Chemical Physics, 2000, 112, 8378-8386.	1.2	54
520	Efficient calculation of matrix elements in low storage filter diagonalization. Journal of Chemical Physics, 1999, 111, 464-471.	1.2	46
521	Extended symmetry-adapted discrete variable representation and accelerated evaluation of Ĥ. Journal of Chemical Physics, 1999, 110, 2771-2777.	1.2	18
522	Quantum calculations of highly excited vibrational spectrum of sulfur dioxide. II. Normal to local mode transition and quantum stochasticity. Journal of Chemical Physics, 1999, 111, 4032-4040.	1.2	37

#	Article	IF	CITATIONS
523	Quantum calculations of highly excited vibrational spectrum of sulfur dioxide. III. Emission spectra from the Cl̃f 1B2 state. Journal of Chemical Physics, 1999, 111, 7782-7788.	1.2	21
524	Dissipative quantum dynamics in discrete energy representation: Photon-stimulated desorption of NO from metals. Journal of Chemical Physics, 1999, 111, 8595-8604.	1.2	15
525	A single Lanczos propagation method for calculating transition amplitudes. Journal of Chemical Physics, 1999, 111, 9944-9951.	1.2	53
526	Theoretical studies of rotation induced Fermi resonances in HOCl. Journal of Chemical Physics, 1999, 111, 7290-7297.	1.2	6
527	Quantum calculations of highly excited vibrational spectrum of sulfur dioxide. I. Eigenenergies and assignments up to 15 000 cmâ^'1. Journal of Chemical Physics, 1999, 110, 8408-8416.	1.2	36
528	Theory of photoinduced surface reactions of admolecules. Progress in Surface Science, 1999, 62, 239-303.	3.8	168
529	The Chebyshev propagator for quantum systems. Computer Physics Communications, 1999, 119, 19-31.	3.0	95
530	A refined near-equilibrium potential energy surface and the absorption spectrum of OClO(\tilde{A}_f 2A2). Chemical Physics Letters, 1999, 307, 109-116.	1.2	18
531	A low-storage filter-diagonalization method to calculate expectation values of operators non-commutative with the Hamiltonian: Vibrational assignment of HOCI. Chemical Physics Letters, 1999, 308, 123-130.	1.2	21
532	Assigning the transition from normal to local vibrational mode in SO2 by periodic orbits. Chemical Physics Letters, 1999, 311, 241-247.	1.2	19
533	Quantum mechanical study of photodissociation of oriented ClNO(S1). Physical Chemistry Chemical Physics, 1999, 1, 1265-1272.	1.3	21
534	Short-time Chebyshev propagator for the Liouville–von Neumann equation. Journal of Chemical Physics, 1999, 110, 6626-6634.	1.2	29
535	Influence of the ground-state potential on the product rotational/translational correlation in the photon-stimulated desorption of NO. Chemical Physics Letters, 1998, 286, 205-210.	1.2	8
536	An efficient method to calculate resonance Raman amplitudes via polynomial propagation. Chemical Physics Letters, 1998, 289, 396-402.	1.2	11
537	All-Atom Empirical Potential for Molecular Modeling and Dynamics Studies of Proteinsâ€. Journal of Physical Chemistry B, 1998, 102, 3586-3616.	1.2	12,915
538	Discrete energy representation and generalized propagation of physical systems. Journal of Chemical Physics, 1998, 108, 6068-6077.	1.2	85
539	Symmetry-enhanced spectral analysis via the spectral method and filter diagonalization. Physical Review E, 1998, 57, 7288-7293.	0.8	24
540	Symmetry-adapted filter diagonalization: Calculation of the vibrational spectrum of planar acetylene from correlation functions. Journal of Chemical Physics, 1998, 109, 7128-7136.	1.2	21

#	Article	IF	CITATIONS
541	A time-independent theory of photodissociation based on polynomial propagation. Journal of Chemical Physics, 1998, 108, 2466-2472.	1.2	83
542	Theory of desorption induced by electronic transitions. II. The strong interaction regime. Journal of Chemical Physics, 1997, 107, 8627-8636.	1.2	11
543	Dynamics of substrate mediated photodesorption The role of the excited state potential. Faraday Discussions, 1997, 108, 309-326.	1.6	14
544	A further theoretical exploration of the surface-aligned photo-initiated H+CO2 reaction: Surface motion and temperature dependence. Journal of Chemical Physics, 1997, 107, 9176-9184.	1.2	6
545	Two-dimensional wave packet studies of photon-stimulated desorption of NO from a metal surface induced by single and multiple electronic excitations. Journal of Chemical Physics, 1997, 106, 1967-1977.	1.2	31
546	Photoinitiated Reaction Dynamics between Aligned Adsorbates on Solid Surfaces:Â A Theoretical Exploration of the H + CO2System on LiF(001). Journal of Physical Chemistry B, 1997, 101, 5352-5361.	1.2	11
547	Perturbative treatments of photo-stimulated desorption and dissociation on metal surfaces induced by single and multiple electronic transitions. Surface Science, 1997, 372, 337-349.	0.8	18
548	Determination of Eigenstates via Lanczos-Based Forward Substitution and Filter-Diagonalization. Journal of Computational Physics, 1997, 136, 494-502.	1.9	28
549	Benchmark calculations of bound states of HO2 via basic Lanczos algorithm. Chemical Physics Letters, 1997, 277, 191-198.	1.2	19
550	Calculation of matrix elements in filter diagonalization: a generalized method based on Fourier transform. Chemical Physics Letters, 1997, 279, 252-258.	1.2	30
551	Validity of a hybrid quantum/classical approach in photodissociation/recombination of I2in rare gas matrices. Journal of Chemical Physics, 1996, 104, 528-537.	1.2	18
552	Hybrid quantum/classical studies of photodissociation and recombination of I2 (A) in rare gas matrices: A linear chain model. International Journal of Quantum Chemistry, 1996, 60, 1479-1486.	1.0	0
553	An accurate spectral method with arbitrarily large time step sizes. Chemical Physics Letters, 1996, 252, 201-205.	1.2	3
554	Extraction of resonances via wave packet propagation in Chebyshev order domain: collinear H + H2 scattering. Chemical Physics Letters, 1996, 261, 605-611.	1.2	42
555	Theoretical study of vibrational excitation of ammonia scattered from Cu. Chemical Physics, 1996, 205, 179-190.	0.9	17
556	Evolution of quantum system in order domain of Chebyshev operator. Journal of Chemical Physics, 1996, 105, 3569-3578.	1.2	186
557	A general and efficient filterâ€diagonalization method without time propagation. Journal of Chemical Physics, 1996, 105, 1311-1317.	1.2	87
558	A coherent transition model for photodesorption from metals: NH3/Cu. Journal of Chemical Physics, 1996, 104, 8757-8767.	1.2	22

#	Article	IF	CITATIONS
559	Four-dimensional quantum dynamics of the CH3I/MgO photodissociation. Chemical Physics Letters, 1995, 235, 341-346.	1.2	45
560	Quantum/classical hybrid dynamics of I2(A) photodissociation and recombination in matrix Ar, linear chain model. Chemical Physics Letters, 1995, 237, 299-307.	1.2	14
561	Wave packet dynamics of photon- and electron-stimulated desorption of ammonia from surfaces. Chemical Physics Letters, 1995, 240, 393-399.	1.2	31
562	Quantum dynamics within the multiconfiguration time-dependent Hartree approximation. Computational and Theoretical Chemistry, 1995, 341, 201-215.	1.5	9
563	A linear chain hybrid quantum/classical model for the photodissociation and recombination of I2(A) in rare gas matrices. Journal of Chemical Physics, 1995, 103, 7851-7863.	1.2	22
564	Quantum mechanical studies of photodesorption of ammonia from a metal surface: Isotope effects, final state distributions, and desorption mechanisms. Journal of Chemical Physics, 1995, 103, 9062-9073.	1.2	49
565	Multiconfiguration timeâ€dependent Hartree studies of the Cl2Ne vibrational predissociation dynamics. Journal of Chemical Physics, 1995, 102, 1944-1954.	1.2	50
566	Photodissociation of HCl+/MgO(001): The static and dynamic effects of the surface. Journal of Chemical Physics, 1995, 103, 2745-2757.	1.2	9
567	Theoretical modeling of photodissociation dynamics of CH3I on MgO(001). Journal of Chemical Physics, 1995, 103, 4300-4311.	1.2	10
568	How many configurations are needed in a timeâ€dependent Hartree treatment of the photodissociation of ICN?. Journal of Chemical Physics, 1995, 102, 2404-2412.	1.2	33
569	Multiconfiguration timeâ€dependent Hartree studies of the CH3I/MgO photodissociation dynamics. Journal of Chemical Physics, 1994, 101, 5831-5840.	1.2	70
570	Exact quantum and timeâ€dependent Hartree studies of the HBr/LiF(001) photodissociation dynamics. Journal of Chemical Physics, 1994, 101, 1231-1241.	1.2	29
571	Femtosecond real-time probing of reactions. XIV. Rydberg states of methyl iodide. Canadian Journal of Chemistry, 1994, 72, 947-957.	0.6	30
572	Femtosecond reaction dynamics of Rydberg states. Methyl iodide. Chemical Physics Letters, 1993, 214, 281-289.	1.2	58
573	A novel method for simulating atoms and molecules interacting with ionic surfaces. Surface Science, 1993, 286, 182-189.	0.8	6
574	Time-dependent quantum dynamical study of the photodissociation of hydrochlorous acid. The Journal of Physical Chemistry, 1993, 97, 2602-2608.	2.9	38
575	The effect of nonadiabatic coupling in the predissociation dynamics of IBr. Journal of Chemical Physics, 1993, 99, 1685-1692.	1.2	41
576	Theoretical modeling of photodissociation dynamics of CH3I on LiF(001). Journal of Chemical Physics, 1993, 98, 3395-3409.	1.2	27

#	Article	IF	CITATIONS
577	The orientation of adsorbed methyl halides on a LiF(001) surface: A Monte Carlo study. Journal of Chemical Physics, 1993, 98, 7412-7419.	1.2	20
578	Dynamical simulations of the photodissociation of CH3Br on a LiF (001) surface. Journal of Chemical Physics, 1992, 97, 2110-2118.	1.2	23
579	A waveâ€packet study on nonadiabatic transition dynamics in photodissociation: The importance of parent bending motion. Journal of Chemical Physics, 1992, 96, 2731-2739.	1.2	38
580	Simulation of photodissociation dynamics of HBr adsorbed on a LiF (001) surface. Journal of Chemical Physics, 1992, 96, 8564-8573.	1.2	21
581	Threeâ€dimensional photodissociation dynamics of methyl iodide. Journal of Chemical Physics, 1992, 96, 6629-6642.	1.2	104
582	Comment on: Timeâ€dependent Hartree approximation applied to the photodissociation of ICN. Journal of Chemical Physics, 1992, 97, 7853-7854.	1.2	6
583	Femtosecond dynamics of a predissociative Rydberg state of methyl iodide. Chemical Physics Letters, 1992, 193, 527-531.	1.2	7
584	Polarized resonance Raman spectrum as a probe of nonadiabatic transitions in photodissociation: a theoretical treatment. The Journal of Physical Chemistry, 1991, 95, 3091-3096.	2.9	32
585	A three-dimensional wavepacket study on photodissociation dynamics of methyl iodide. Chemical Physics Letters, 1991, 187, 360-366.	1.2	32
586	A mechanism for the quenching of I* in photodissociation of methyl iodide adsorbed on a MgO surface. Chemical Physics Letters, 1991, 184, 245-250.	1.2	31
587	A reduced dimension quantum wave packet study of photodissociation dynamics of diatomic molecules on surfaces. Journal of Chemical Physics, 1991, 94, 379-387.	1.2	30
588	Quantum nonadiabatic effects in the photodissociation of vibrationally excited CH3I. Journal of Chemical Physics, 1991, 94, 6562-6568.	1.2	49
589	Nonadiabatic effects in photodissociation dynamics: A quantum mechanical study of ICN photodissociation in the A continuum. Journal of Chemical Physics, 1990, 92, 1634-1642.	1.2	54
590	Timeâ€dependent dynamics of methyl iodide photodissociation in the first continuum. Journal of Chemical Physics, 1990, 93, 393-402.	1.2	127
591	The B [˜] -state photodissociation of water. Molecular Physics, 1989, 68, 249-254.	0.8	10
592	A classical trajectory study of the $\tilde{A}f$ -state photodissociation of the water molecule. Journal of the Chemical Society, Faraday Transactions 2, 1988, 84, 949-959.	1.1	19
593	Dynamics of the $\tilde{A}f$ -state photodissociation of H2O at 193 nm. Molecular Physics, 1988, 65, 821-827.	0.8	27
594	A comparative study of quantum mechanical and classical trajectory calculations for anA+BCcollinear non-adiabatic collision. Molecular Physics, 1988, 65, 909-923.	0.8	3

#	Article	IF	CITATIONS
595	Potential-energy functions for the ground states of CO2, CS2and OCS, and dynamical calculations on the reaction O(1D)+ CS(1Σ+)→ S(1D)+ CO(1Σ+). Journal of the Chemical Society, Faraday Transactions 2, 1987, 83, 683-692.	, 1.1	15
596	The role of the[Btilde]-[Xtilde]conical intersection in the photodissociation of water. Molecular Physics, 1987, 62, 283-294.	0.8	31
597	Unimolecular dissociation dynamics of electronically excited HCO(Ã ² A′′): rotational control of nonadiabatic decay. Faraday Discussions, 0, 238, 236-248.	1.6	2
598	Representation of Diabatic Potential Energy Matrices for Multiconfiguration Time-Dependent Hartree Treatments of High-Dimensional Nonadiabatic Photodissociation Dynamics. Journal of Chemical Theory and Computation, 0, , .	2.3	1