Jianyong Ouyang

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/2347108/jianyong-ouyang-publications-by-year.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

183	17,030	67	129
papers	citations	h-index	g-index
190	19,355	10.5	7.27
ext. papers	ext. citations	avg, IF	L-index

#	Paper	IF	Citations
183	Thermoelectric Properties of Conducting Polymers with Ionic Conductors 2022 , 145-162		
182	Fundamental Knowledge on Thermoelectric Materials 2022 , 1-39		
181	Ionic thermoelectrics: principles, materials and applications. <i>Journal of Materials Chemistry C</i> , 2022 , 10, 433-450	7.1	5
180	Visible light-induced enhancement in the Seebeck coefficient of PEDOT:PSS composites with two-dimensional potassium poly-(heptazine imide). <i>Journal of Materials Chemistry A</i> , 2022 , 10, 862-871	13	2
179	Flexible Thermoelectrics Based on Poly(3,4-Ethylenedioxythiophene) 2022 , 81-116		
178	Recent Progress of Electrode Materials for Flexible Perovskite Solar Cells <i>Nano-Micro Letters</i> , 2022 , 14, 117	19.5	10
177	Flexible perovskite solar cells: Material selection and structure design. <i>Applied Physics Reviews</i> , 2022 , 9, 021307	17.3	4
176	Role of Ions in Hydrogels with an Ionic Seebeck Coefficient of 52.9 mV K <i>Journal of Physical Chemistry Letters</i> , 2022 , 4621-4627	6.4	6
175	Wirelessly operated bioelectronic sutures for the monitoring of deep surgical wounds. <i>Nature Biomedical Engineering</i> , 2021 , 5, 1217-1227	19	9
174	Cation effect of inorganic salts on ionic Seebeck coefficient. <i>Applied Physics Letters</i> , 2021 , 118, 103902	3.4	6
173	Self-Adhesive, Stretchable, Biocompatible, and Conductive Nonvolatile Eutectogels as Wearable Conformal Strain and Pressure Sensors and Biopotential Electrodes for Precise Health Monitoring. <i>ACS Applied Materials & Discourse ACS ACS Applied Materials & Discourse ACS ACS ACS ACS ACS ACS ACS ACS ACS ACS</i>	9.5	17
172	Biocompatible Blends of an Intrinsically Conducting Polymer as Stretchable Strain Sensors for Real-Time Monitoring of Starch-Based Food Processing. <i>Advanced Functional Materials</i> , 2021 , 31, 21027	4 ¹ 5 ^{5.6}	4
171	Stretchable and Sensitive Silver Nanowire-Hydrogel Strain Sensors for Proprioceptive Actuation. <i>ACS Applied Materials & Distriction</i> (2021), 13, 37816-37829	9.5	6
170	Rapid one-step in situ synthesis of carbon nanoparticles with cellulosic paper for biosensing. Sensors and Actuators B: Chemical, 2021 , 339, 129849	8.5	
169	Recent developments in flexible thermoelectrics: From materials to devices. <i>Renewable and Sustainable Energy Reviews</i> , 2021 , 137, 110448	16.2	29
168	Recent advances in resistive random access memory based on lead halide perovskite. <i>Informal</i> d <i>Materilly</i> , 2021 , 3, 293-315	23.1	29
167	Wearable Stretchable Dry and Self-Adhesive Strain Sensors with Conformal Contact to Skin for High-Quality Motion Monitoring. <i>Advanced Functional Materials</i> , 2021 , 31, 2007495	15.6	64

(2020-2021)

166	Enhancement in the Mechanical Stretchability of PEDOT:PSS Films by Compounds of Multiple Hydroxyl Groups for Their Application as Transparent Stretchable Conductors. <i>Macromolecules</i> , 2021 , 54, 1234-1242	5.5	7
165	A highly sensitive, foldable and wearable pressure sensor based on MXene-coated airlaid paper for electronic skin. <i>Journal of Materials Chemistry C</i> , 2021 , 9, 12642-12649	7.1	8
164	A mixed ion-electron conducting carbon nanotube ionogel to efficiently harvest heat from both a temperature gradient and temperature fluctuation. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 13588-135	5 9 6	6
163	Application of intrinsically conducting polymers in flexible electronics. <i>SmartMat</i> , 2021 , 2, 263-285	22.8	21
162	Tunable Soft Lens of Large Focal Length Change. Soft Robotics, 2021,	9.2	2
161	Highly Stretchable and Kirigami-Structured Strain Sensors with Long Silver Nanowires of High Aspect Ratio. <i>Machines</i> , 2021 , 9, 186	2.9	3
160	Gas-permeable and highly sensitive, washable and wearable strain sensors based on graphene/carbon nanotubes hybrids e-textile. <i>Composites Part A: Applied Science and Manufacturing</i> , 2021 , 149, 106556	8.4	6
159	Photo-enhanced Seebeck effect of a highly conductive thermoelectric material. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 16725-16732	13	5
158	Simultaneous enhancements in the Seebeck coefficient and conductivity of PEDOT:PSS by blending ferroelectric BaTiO3 nanoparticles. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 16952-16960	13	3
157	Role of annealing temperature of nickel oxide (NiOx) as hole transport layer in work function alignment with perovskite. <i>Applied Physics A: Materials Science and Processing</i> , 2021 , 127, 1	2.6	6
156	Quasi-solid state nanoparticle/(ionic liquid) gels with significantly high ionic thermoelectric properties. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 10813-10821	13	37
155	Thermoelectric polymer films with a significantly high Seebeck coefficient and thermoelectric power factor obtained through surface energy filtering. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 13600) ¹ /360	9 ¹³
154	Electromechanical characterization of magnetic responsive and conductive soft polymer actuators 2020 , 349-361		1
153	Shallow defects levels and extract detrapped charges to stabilize highly efficient and hysteresis-free perovskite photovoltaic devices. <i>Nano Energy</i> , 2020 , 71, 104556	17.1	28
152	Significant Enhancement in the Seebeck Coefficient and Power Factor of p-Type Poly(3,4-ethylenedioxythiophene):Poly(styrenesulfonate) through the Incorporation of n-Type MXene. <i>ACS Applied Materials & Description of Action 2020</i> , 12, 13013-13020	9.5	35
151	Highly machine-washable e-textiles with high strain sensitivity and high thermal conduction. Journal of Materials Chemistry C, 2020 , 8, 2741-2748	7.1	30
150	Enhancements in the Mechanical Stretchability and Thermoelectric Properties of PEDOT:PSS for Flexible Electronics Applications. <i>Accounts of Materials Research</i> , 2020 , 1, 146-157	7.5	16
149	Ultrahigh Thermoelectric Power Generation from Both Ion Diffusion by Temperature Fluctuation and Hole Accumulation by Temperature Gradient. <i>Advanced Energy Materials</i> , 2020 , 10, 2001633	21.8	16

148	Fully organic compliant dry electrodes self-adhesive to skin for long-term motion-robust epidermal biopotential monitoring. <i>Nature Communications</i> , 2020 , 11, 4683	17.4	85
147	Stretchable and Transparent Ionogels with High Thermoelectric Properties. <i>Advanced Functional Materials</i> , 2020 , 30, 2004699	15.6	47
146	Enhancement in the photovoltaic performance of planar perovskite solar cells by perovskite cluster engineering using an interfacial energy modifier. <i>Nanoscale</i> , 2019 , 11, 3216-3221	7.7	9
145	Thermally evaporated two-dimensional SnS as an efficient and stable electron collection interlayer for inverted planar perovskite solar cells. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 4759-4765	13	12
144	Sequential Solution Polymerization of Poly(3,4-ethylenedioxythiophene) Using VO as Oxidant for Flexible Touch Sensors. <i>IScience</i> , 2019 , 12, 66-75	6.1	35
143	Applications of carbon nanotubes and graphene for third-generation solar cells and fuel cells. <i>Nano Materials Science</i> , 2019 , 1, 77-90	10.2	18
142	20.7% highly reproducible inverted planar perovskite solar cells with enhanced fill factor and eliminated hysteresis. <i>Energy and Environmental Science</i> , 2019 , 12, 1622-1633	35.4	134
141	MXenes with tunable work functions and their application as electron- and hole-transport materials in non-fullerene organic solar cells. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 11160-11169	13	80
140	Thermoelectric Properties of PEDOT:PSS. Advanced Electronic Materials, 2019, 5, 1800769	6.4	141
139	A scalable, low-cost and robust photo-thermal fabric with tunable and programmable 2D/3D structures towards environmentally adaptable liquid/solid-medium water extraction. <i>Nano Energy</i> , 2019 , 65, 104002	17.1	63
138	Transparent Soft Robots for Effective Camouflage. Advanced Functional Materials, 2019, 29, 1901908	15.6	44
137	Flexible Quasi-Solid State Ionogels with Remarkable Seebeck Coefficient and High Thermoelectric Properties. <i>Advanced Energy Materials</i> , 2019 , 9, 1901085	21.8	84
136	Biocompatible Conductive Polymers with High Conductivity and High Stretchability. <i>ACS Applied Materials & Acs Applied & Acs Applied</i>	9.5	67
135	All-Small-Molecule Organic Solar Cells with an Ordered Liquid Crystalline Donor. <i>Joule</i> , 2019 , 3, 3034-30	047 .8	168
134	Bio-inspired Soft Robot Driven by Transparent Artificial Muscle 2019,		1
133	Beyond energy harvesting - multi-functional triboelectric nanosensors on a textile. <i>Nano Energy</i> , 2019 , 57, 338-352	17.1	119
132	Room temperature ferroelectricity of hybrid organic[horganic perovskites with mixed iodine and bromine. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 9665-9676	13	21
131	Recent Development of Thermoelectric Polymers and Composites. <i>Macromolecular Rapid Communications</i> , 2018 , 39, e1700727	4.8	169

(2018-2018)

130	Highly washable e-textile prepared by ultrasonic nanosoldering of carbon nanotubes onto polymer fibers. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 883-889	7.1	39
129	A theoretical mechanistic study on electrical conductivity enhancement of DMSO treated PEDOT:PSS. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 5122-5131	7.1	57
128	Enhancement of the thermoelectric properties of PEDOT:PSS via one-step treatment with cosolvents or their solutions of organic salts. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 7080-7087	13	62
127	Investigation on the structural, morphological, electronic and photovoltaic properties of a perovskite thin film by introducing lithium halide <i>RSC Advances</i> , 2018 , 8, 11455-11461	3.7	4
126	Metal Ion/Dendrimer Complexes with Tunable Work Functions in a Wide Range and Their Application as Electron- and Hole-Transport Materials of Non-Fullerene Organic Solar Cells. <i>Advanced Functional Materials</i> , 2018 , 28, 1802554	15.6	10
125	Novel augmented reality interface using a self-powered triboelectric based virtual reality 3D-control sensor. <i>Nano Energy</i> , 2018 , 51, 162-172	17.1	47
124	PEDOT:PSS monolayers to enhance the hole extraction and stability of perovskite solar cells. Journal of Materials Chemistry A, 2018 , 6, 16583-16589	13	105
123	Polymer films with ultrahigh thermoelectric properties arising from significant seebeck coefficient enhancement by ion accumulation on surface. <i>Nano Energy</i> , 2018 , 51, 481-488	17.1	116
122	Self-assembled atomically thin hybrid conjugated polymer perovskites with two-dimensional structure. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 8405-8410	7.1	3
121	Soft Electronically Functional Polymeric Composite Materials for a Flexible and Stretchable Digital Future. <i>Advanced Materials</i> , 2018 , 30, e1802560	24	88
120	Recent Advances of Intrinsically Conductive Polymers. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2018 , 34, 1211-1220	3.8	24
119	Highly efficient and stable inverted perovskite solar cells with two-dimensional ZnSe deposited using a thermal evaporator for electron collection. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 22713-227	263	8
118	Solution processed intrinsically conductive polymer films with high thermoelectric properties and good air stability. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 24496-24502	13	25
117	Efficiency improvement of planar perovskite solar cells using a phenol additive. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 11519-11524	7.1	12
116	Enhancement of Conductivity and Thermoelectric Property of PEDOT:PSS via Acid Doping and Single Post-Treatment for Flexible Power Generator. <i>Advanced Sustainable Systems</i> , 2018 , 2, 1800085	5.9	55
115	Significant enhancement in the Seebeck coefficient and power factor of thermoelectric polymers by the Soret effect of polyelectrolytes. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 19347-19352	13	43
114	Multifunctional RbCl dopants for efficient inverted planar perovskite solar cell with ultra-high fill factor, negligible hysteresis and improved stability. <i>Nano Energy</i> , 2018 , 53, 567-578	17.1	47
113	Carbon/Polymer Composite Electrocatalysts for the Counter Electrode of Dye-Sensitized Solar Cells 2018 , 263-293		

112	Development of quinoxaline based polymers for photovoltaic applications. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 1858-1879	7.1	74
111	Stretchable heaters with composites of an intrinsically conductive polymer, reduced graphene oxide and an elastomer for wearable thermotherapy. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 1544-15	571 ^{.1}	78
110	Ultraviolet, blue, and green InGaN-based light-emitting diodes functionalized with ZnO nanorods. <i>Journal of Alloys and Compounds</i> , 2017 , 708, 612-618	5.7	14
109	Effect of water-soluble vitamins on the structure and properties of poly(3,4-ethylenedioxythiopehene):poly(styrenesulfonate). <i>Organic Electronics</i> , 2017 , 45, 139-144	3.5	8
108	Conductivity Enhancement of PEDOT:PSS via Addition of Chloroplatinic Acid and Its Mechanism. <i>Advanced Electronic Materials</i> , 2017 , 3, 1700047	6.4	90
107	Electrode Materials for Printable Solar Cells 2017 , 457-512		4
106	Solution-Processed Highly Superparamagnetic and Conductive PEDOT:PSS/FeO Nanocomposite Films with High Transparency and High Mechanical Flexibility. <i>ACS Applied Materials & Discrete Materials & Dis</i>	9.5	38
105	Variable temperature and high-pressure crystal chemistry of perovskite formamidinium lead iodide: a single crystal X-ray diffraction and computational study. <i>Chemical Communications</i> , 2017 , 53, 7537-754	4 ō .8	31
104	Tandem Solar Cells: Enhanced Output from Biohybrid Photoelectrochemical Transparent Tandem Cells Integrating Photosynthetic Proteins Genetically Modified for Expanded Solar Energy Harvesting (Adv. Energy Mater. 7/2017). Advanced Energy Materials, 2017, 7,	21.8	1
103	Higher PEDOT Molecular Weight Giving Rise to Higher Thermoelectric Property of PEDOT:PSS: A Comparative Study of Clevios P and Clevios PH1000. <i>ACS Applied Materials & Discrete Materials & Comparative Study of Clevios P and Clevios PH1000. ACS Applied Materials & Discrete Materials</i>	9.5	67
102	Significantly Enhanced Thermoelectric Properties of PEDOT:PSS Films through Sequential Post-Treatments with Common Acids and Bases. <i>Advanced Energy Materials</i> , 2017 , 7, 1602116	21.8	220
101	Enhanced Output from Biohybrid Photoelectrochemical Transparent Tandem Cells Integrating Photosynthetic Proteins Genetically Modified for Expanded Solar Energy Harvesting. <i>Advanced Energy Materials</i> , 2017 , 7, 1601821	21.8	30
100	The Effect of Methylammonium Iodide on the Supersaturation and Interfacial Energy of the Crystallization of Methylammonium Lead Triiodide Single Crystals. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 16073-16076	16.4	15
99	Factors Influencing the Mechanical Properties of Formamidinium Lead Halides and Related Hybrid Perovskites. <i>ChemSusChem</i> , 2017 , 10, 3683-3683	8.3	
98	Enhanced planar heterojunction perovskite solar cell performance and stability using PDDA polyelectrolyte capping agent. <i>Solar Energy Materials and Solar Cells</i> , 2017 , 172, 133-139	6.4	18
97	The Effect of Methylammonium Iodide on the Supersaturation and Interfacial Energy of the Crystallization of Methylammonium Lead Triiodide Single Crystals. <i>Angewandte Chemie</i> , 2017 , 129, 1628	3 3 -162	92
96	Factors Influencing the Mechanical Properties of Formamidinium Lead Halides and Related Hybrid Perovskites. <i>ChemSusChem</i> , 2017 , 10, 3740-3745	8.3	55
95	Significant Enhancement in the Thermoelectric Properties of PEDOT:PSS Films through a Treatment with Organic Solutions of Inorganic Salts. <i>ACS Applied Materials & Description of Action Science</i> , 2016, 23204-11	9.5	91

(2015-2016)

Stretchable and conductive polymer films for high-performance electromagnetic interference shielding. <i>Journal of Materials Chemistry C</i> , 2016 , 4, 6525-6532	7.1	132
A new view of graphene oxide biosafety in a water environment using an eatable fish as a model. <i>RSC Advances</i> , 2016 , 6, 29619-29623	3.7	7
Poly(3,4-ethylenedioxythiophene):polystyrene sulfonate films with low conductivity and low acidity through a treatment of their solutions with probe ultrasonication and their application as hole transport layer in polymer solar cells and perovskite solar cells. <i>Organic Electronics</i> , 2016 , 32, 149-156	3.5	49
Graphene coated nonwoven fabrics as wearable sensors. <i>Journal of Materials Chemistry C</i> , 2016 , 4, 3224	- 3 230	86
Boosting the performance of planar heterojunction perovskite solar cell by controlling the precursor purity of perovskite materials. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 887-893	13	117
High performance planar perovskite solar cells with a perovskite of mixed organic cations and mixed halides, MA1NFAxPbI3NCly. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 12543-12553	13	57
Enhancing the planar heterojunction perovskite solar cell performance through tuning the precursor ratio. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 7943-7949	13	79
PEDOT:PSS Films with Metallic Conductivity through a Treatment with Common Organic Solutions of Organic Salts and Their Application as a Transparent Electrode of Polymer Solar Cells. <i>ACS Applied Materials & Description of Materials & De</i>	9.5	147
Elucidating the charge carrier transport and extraction in planar heterojunction perovskite solar cells by Kelvin probe force microscopy. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 17464-17472	13	38
Enhancing the photovoltaic performance of planar heterojunction perovskite solar cells by doping the perovskite layer with alkali metal ions. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 16546-16552	13	119
Interface studies of the planar heterojunction perovskite solar cells. <i>Solar Energy Materials and Solar Cells</i> , 2016 , 157, 783-790	6.4	38
Ternary NiAuPt Nanoparticles on Reduced Graphene Oxide as Catalysts toward the Electrochemical Oxidation Reaction of Ethanol. <i>ACS Catalysis</i> , 2015 , 5, 1371-1380	13.1	84
Photoluminescence of Graphene Oxide in Visible Range Arising from Excimer Formation. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 20085-20090	3.8	38
Effects of H 2 /CO blend ratio on radiated power of micro combustor/emitter. <i>Applied Thermal Engineering</i> , 2015 , 86, 178-186	5.8	28
Effects of organic inorganic hybrid perovskite materials on the electronic properties and morphology of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) and the photovoltaic performance of planar perovskite solar cells. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 15897-15904	13	71
Two-terminal resistive switching memory devices with a polymer film embedded with nanoparticles. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 7243-7261	7.1	22
Transparent conductive oxide-free perovskite solar cells with PEDOT:PSS as transparent electrode. <i>ACS Applied Materials & Discourse (Materials & Discourse)</i> 1, 15314-20	9.5	169
Electronic transfer from aluminum into the core of gold nanoparticles capped with conjugated 2-naphthalenethiol. <i>Organic Electronics</i> , 2015 , 21, 138-143	3.5	4
	A new view of graphene oxide biosafety in a water environment using an eatable fish as a model. <i>RSC Advances</i> , 2016, 6, 29619-29623 Poly(3,4-ethylenedioxythiophene):polystyrene sulfonate films with low conductivity and low acidity through a treatment of their solutions with probe ultrasonication and their application as hole transport layer in polymer solar cells and perovskite solar cells. <i>Organic Electronics</i> , 2016, 32, 149-156 Graphene coated nonwoven fabrics as wearable sensors. <i>Journal of Materials Chemistry C</i> , 2016, 4, 3224 Boosting the performance of planar heterojunction perovskite solar cell by controlling the precursor purity of perovskite materials. <i>Journal of Materials Chemistry A</i> , 2016, 4, 887-893 High performance planar perovskite solar cells with a perovskite of mixed organic cations and mixed halides, MA18FAxPb13UCly. <i>Journal of Materials Chemistry A</i> , 2016, 4, 12543-12553 Enhancing the planar heterojunction perovskite solar cell performance through tuning the precursor ratio. <i>Journal of Materials Chemistry A</i> , 2016, 4, 7943-7949 PEDOT:PSS Films with Metallic Conductivity through a Treatment with Common Organic Solutions of Organic Salts and Their Application as a Transparent Electrode of Polymer Solar Cells. <i>ACS Applied Materials Ramp; Interfaces</i> , 2016, 8, 11629-38 Elucidating the charge carrier transport and extraction in planar heterojunction perovskite solar cells by Kelvin probe force microscopy. <i>Journal of Materials Chemistry A</i> , 2016, 4, 17464-17472 Enhancing the photovoltaic performance of planar heterojunction perovskite solar cells by doping the perovskite layer with alkali metal ions. <i>Journal of Materials Chemistry A</i> , 2016, 4, 16546-16552 Interface studies of the planar heterojunction perovskite solar cells. <i>Solar Energy Materials and Solar Cells</i> , 2016, 157, 783-790 Ternary NiAuPP. Nanoparticles on Reduced Graphene Oxide as Catalysts toward the Electrochemical Oxidation Reaction of Ethanol. <i>ACS Catalysis</i> , 2015, 5, 1371-1380 Photoluminescence of Graphene Oxi	A new view of graphene oxide biosafety in a water environment using an eatable fish as a model. 85C Advances, 2016, 6, 29619-29623 37Poly(3,4-ethylenedioxythiophene):polystyrene sulfonate films with low conductivity and low acidity through a treatment of their solutions with probe ultrasonication and their application as hole transport layer in polymer solar cells and perovskite solar cells. Organic Electronics, 2016, 32, 149-156 Graphene coated nonwoven fabrics as wearable sensors. Journal of Materials Chemistry C, 2016, 4, 3224-3230 Boosting the performance of planar heterojunction perovskite solar cell by controlling the precursor purity of perovskite materials. Journal of Materials Chemistry A, 2016, 4, 887-893 13 High performance planar perovskite solar cells with a perovskite of mixed organic cations and mixed halides, MA18FAXPb13JCly. Journal of Materials Chemistry A, 2016, 4, 12543-12553 Enhancing the planar heterojunction perovskite solar cell performance through tuning the precursor ratio. Journal of Materials Chemistry A, 2016, 4, 7943-7949 PEDOT:PSS Films with Metallic Conductivity through a Treatment with Common Organic Solutions of Organic Salts and Their Application as a Transparent Electrode of Polymer Solar Cells. ACS Applied Materials & amp; Interfaces, 2016, 8, 11629-38 Elucidating the charge carrier transport and extraction in planar heterojunction perovskite solar cells by Kelvin probe force microscopy. Journal of Materials Chemistry A, 2016, 4, 17464-17472 Enhancing the photovoltaic performance of planar heterojunction perovskite solar cells by doping the perovskite Jayer with alkali metal ions. Journal of Materials Chemistry A, 2016, 4, 16546-16552 Interface studies of the planar heterojunction perovskite solar cells. Solar Energy Materials and Solar Cells, 2016, 157, 783-790 Ternary NiAupt Nanoparticles on Reduced Graphene Oxide as Catalysts toward the Electrochemical Oxidation Reaction of Ethanol. ACS Catalysis, 2015, 5, 1371-1380 Photoluminescence of Graphene Oxide in Vis

76	Review on application of PEDOTs and PEDOT:PSS in energy conversion and storage devices. Journal of Materials Science: Materials in Electronics, 2015, 26, 4438-4462	2.1	347
75	Ferroelectricity of CH3NH3PbI3 Perovskite. <i>Journal of Physical Chemistry Letters</i> , 2015 , 6, 1155-61	6.4	260
74	Layered V2O5/PEDOT Nanowires and Ultrathin Nanobelts Fabricated with a Silk Reelinglike Process. <i>Chemistry of Materials</i> , 2015 , 27, 5813-5819	9.6	57
73	Stretchable and Conductive Polymer Films Prepared by Solution Blending. <i>ACS Applied Materials & Amp; Interfaces</i> , 2015 , 7, 18415-23	9.5	123
72	Nitrogen-Doped Reduced Graphene Oxide Prepared by Simultaneous Thermal Reduction and Nitrogen Doping of Graphene Oxide in Air and Its Application as an Electrocatalyst. <i>ACS Applied Materials & Amp; Interfaces</i> , 2015 , 7, 26952-8	9.5	79
71	Addressing the light-soaking issue in inverted organic solar cells using chemical bath deposited fluorinated TiOx electron transport layer. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 314-322	13	34
70	Efficiency enhancement of planar perovskite solar cells by adding zwitterion/LiF double interlayers for electron collection. <i>Nanoscale</i> , 2015 , 7, 896-900	7.7	119
69	A molecular nematic liquid crystalline material for high-performance organic photovoltaics. <i>Nature Communications</i> , 2015 , 6, 6013	17.4	455
68	Improved efficiency and stability of polymer solar cells utilizing two-dimensional reduced graphene oxide: graphene oxide nanocomposites as hole-collection material. <i>ACS Applied Materials & ACS Applied & ACS ACS ACS ACS ACS ACS ACS ACS ACS ACS</i>	9.5	37
67	Graphene oxide/multi-walled carbon nanotube nanocomposites as the gelator of gel electrolytes for quasi-solid state dye-sensitized solar cells. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 9226	13	21
66	Highly efficient iodide/triiodide dye-sensitized solar cells with gel-coated reduce graphene oxide/single-walled carbon nanotube composites as the counter electrode exhibiting an open-circuit voltage of 0.90 V. ACS Applied Materials & Interfaces, 2013, 5, 6657-64	9.5	48
65	Becondary doping[methods to significantly enhance the conductivity of PEDOT:PSS for its application as transparent electrode of optoelectronic devices. <i>Displays</i> , 2013 , 34, 423-436	3.4	226
64	In situ deposition of gold nanostructures with well-defined shapes on unfunctionalized reduced graphene oxide through chemical reduction of a dry gold precursor with ethylene glycol vapor. <i>RSC Advances</i> , 2013 , 3, 1201-1209	3.7	12
63	Ethyl cellulose and functionalized carbon nanotubes as a co-gelator for high-performance quasi-solid state dye-sensitized solar cells. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 14392	13	21
62	Solution-processed PEDOT:PSS films with conductivities as indium tin oxide through a treatment with mild and weak organic acids. <i>ACS Applied Materials & amp; Interfaces</i> , 2013 , 5, 13082-8	9.5	184
61	Thermal performance of micro-combustors with baffles for thermophotovoltaic system. <i>Applied Thermal Engineering</i> , 2013 , 61, 670-677	5.8	63
60	Polymer:nanoparticle memory devices with electrode-sensitive bipolar resistive switches by exploring the electrical contact between a bulk metal and metal nanoparticles. <i>Organic Electronics</i> , 2013 , 14, 665-675	3.5	19
59	Highly efficient inverted polymer solar cells with a solution-processable dendrimer as the electron-collection interlayer. <i>Applied Physics Letters</i> , 2013 , 102, 083302	3.4	10

(2010-2012)

58	Improvement in the photovoltaic efficiency of polymer solar cells by treating the poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) buffer layer with co-solvents of hydrophilic organic solvents and hydrophobic 1,2-dichlorobenzene. <i>Solar Energy Materials and Solar Cells</i> , 2012, 97, 89-96	6.4	59
57	High-performance polymer solar cells with a conjugated zwitterion by solution processing or thermal deposition as the electron-collection interlayer. <i>Journal of Materials Chemistry</i> , 2012 , 22, 24155		69
56	Highly efficient, inverted polymer solar cells with indium tin oxide modified with solution-processed zwitterions as the transparent cathode. <i>ACS Applied Materials & Discrete Samp; Interfaces</i> , 2012 , 4, 2009-17	9.5	74
55	Highly conductive PEDOT:PSS films prepared through a treatment with geminal diols or amphiphilic fluoro compounds. <i>Organic Electronics</i> , 2012 , 13, 1785-1792	3.5	44
54	Functionalized carbon nanotube-induced viscosity reduction of an ionic liquid and performance improvement of dye-sensitized solar cells. <i>Electrochimica Acta</i> , 2012 , 85, 1-8	6.7	34
53	Highly conductive poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) films treated with an amphiphilic fluoro compound as the transparent electrode of polymer solar cells. <i>Energy and Environmental Science</i> , 2012 , 5, 5325-5332	35.4	209
52	Significant different conductivities of the two grades of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate), Clevios P and Clevios PH1000, arising from different molecular weights. ACS Applied Materials & amp; Interfaces, 2012, 4, 4131-40	9.5	118
51	Reduced graphene oxide films fabricated by gel coating and their application as platinum-free counter electrodes of highly efficient iodide/triiodide dye-sensitized solar cells. <i>Journal of Materials Chemistry</i> , 2012 , 22, 14465		64
50	Solution-processed metallic conducting polymer films as transparent electrode of optoelectronic devices. <i>Advanced Materials</i> , 2012 , 24, 2436-40	24	822
49	Ultrafast reduction of graphene oxide with Zn powder in neutral and alkaline solutions at room temperature promoted by the formation of metal complexes. <i>Journal of Materials Chemistry</i> , 2012 , 22, 9109		51
48	Electronically and ionically conductive gels of ionic liquids and charge-transfer tetrathiafulvalene-tetracyanoquinodimethane. <i>Langmuir</i> , 2011 , 27, 10953-61	4	29
47	PEDOT:PSS films with significantly enhanced conductivities induced by preferential solvation with cosolvents and their application in polymer photovoltaic cells. <i>Journal of Materials Chemistry</i> , 2011 , 21, 4927		379
46	Attachment of Platinum Nanoparticles to Substrates by Coating and Polyol Reduction of A Platinum Precursor. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 8519-8526	3.8	44
45	Ionic Conductivity Enhancement of Polyethylene Oxide-LiClO4 Electrolyte by Adding Functionalized Multi-Walled Carbon Nanotubes. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 16688-16694	1 ^{3.8}	45
44	Ultrasonication-assisted ultrafast reduction of graphene oxide by zinc powder at room temperature. <i>Carbon</i> , 2011 , 49, 5389-5397	10.4	296
43	Highly conductive and transparent single-walled carbon nanotube thin films fabricated by gel coating. <i>Journal of Materials Chemistry</i> , 2011 , 21, 17842		23
42	Indium tin oxide modified with sodium compounds as cathode of inverted polymer solar cells. Journal of Materials Chemistry, 2011 , 21, 18339		32
41	Application of nanomaterials in two-terminal resistive-switching memory devices. <i>Nano Reviews</i> , 2010 , 1,		37

40	Significant conductivity enhancement of conductive poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) films through a treatment with organic carboxylic acids and inorganic acids. <i>ACS Applied Materials & Distriction (1988)</i> 474-83	9.5	195
39	High-performance dye-sensitized solar cells with gel-coated binder-free carbon nanotube films as counter electrode. <i>Nanotechnology</i> , 2010 , 21, 395202	3.4	142
38	Nanostructured Platinum Films Deposited by Polyol Reduction of a Platinum Precursor and Their Application as Counter Electrode of Dye-Sensitized Solar Cells. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 4237-4244	3.8	80
37	Highly conductive PEDOT:PSS films prepared through a treatment with zwitterions and their application in polymer photovoltaic cells. <i>Journal of Materials Chemistry</i> , 2010 , 20, 9740		167
36	Polymer:metal nanoparticle devices with electrode-sensitive bipolar resistive switchings and their application as nonvolatile memory devices. <i>Applied Physics Letters</i> , 2010 , 96, 063506	3.4	43
35	Anion effect on salt-induced conductivity enhancement of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) films. <i>Organic Electronics</i> , 2010 , 11, 1129-113	5 ^{3.5}	107
34	Gels of carbon nanotubes and a nonionic surfactant prepared by mechanical grinding. <i>Carbon</i> , 2010 , 48, 293-299	10.4	24
33	Salt-Induced Charge Screening and Significant Conductivity Enhancement of Conducting Poly(3,4-ethylenedioxythiophene):Poly(styrenesulfonate). <i>Macromolecules</i> , 2009 , 42, 4141-4147	5.5	174
32	Time-dependent degradation of titanium osteoconductivity: an implication of biological aging of implant materials. <i>Biomaterials</i> , 2009 , 30, 5352-63	15.6	200
31	Significant Conductivity Enhancement of Conductive Poly(3,4-ethylenedioxythiophene):Poly(styrenesulfonate) Films by Adding Anionic Surfactants into Polymer Solution. <i>Macromolecules</i> , 2008 , 41, 5971-5973	5.5	181
30	Conducting polymer/carbon nanotube composite as counter electrode of dye-sensitized solar cells. <i>Applied Physics Letters</i> , 2008 , 93, 143103	3.4	173
29	Electrochemically controllable conjugation of proteins on surfaces. <i>Bioconjugate Chemistry</i> , 2007 , 18, 1919-23	6.3	40
28	Electrical Switching and Bistability in Organic/Polymeric Thin Films and Memory Devices. <i>Advanced Functional Materials</i> , 2006 , 16, 1001-1014	15.6	517
27	Conducting Polymer as Transparent Electric Glue. Advanced Materials, 2006, 18, 2141-2144	24	116
26	Nanoparticle-induced negative differential resistance and memory effect in polymer bistable light-emitting device. <i>Applied Physics Letters</i> , 2006 , 88, 123506	3.4	76
25	Polymer memory device based on conjugated polymer and gold nanoparticles. <i>Journal of Applied Physics</i> , 2006 , 100, 054309	2.5	161
24	Digital memory device based on tobacco mosaic virus conjugated with nanoparticles. <i>Nature Nanotechnology</i> , 2006 , 1, 72-7	28.7	375
23	Polyaniline nanofiber/gold nanoparticle nonvolatile memory. <i>Nano Letters</i> , 2005 , 5, 1077-80	11.5	760

(1995-2005)

22	Electric-field-induced charge transfer between gold nanoparticle and capping 2-naphthalenethiol and organic memory cells. <i>Applied Physics Letters</i> , 2005 , 86, 123507	3.4	143
21	Absorption spectra modification in poly(3-hexylthiophene):methanofullerene blend thin films. <i>Chemical Physics Letters</i> , 2005 , 411, 138-143	2.5	251
20	Osteoblasts generate harder, stiffer, and more delamination-resistant mineralized tissue on titanium than on polystyrene, associated with distinct tissue micro- and ultrastructure. <i>Journal of Bone and Mineral Research</i> , 2005 , 20, 2002-16	6.3	78
19	Organic Memory Device Fabricated Through Solution Processing. <i>Proceedings of the IEEE</i> , 2005 , 93, 128	37 <u>1</u> 142 9 6	5 88
18	High-Conductivity Poly(3,4-ethylenedioxythiophene):Poly(styrene sulfonate) Film and Its Application in Polymer Optoelectronic Devices. <i>Advanced Functional Materials</i> , 2005 , 15, 203-208	15.6	720
17	Organic Donor-Acceptor System Exhibiting Electrical Bistability for Use in Memory Devices. <i>Advanced Materials</i> , 2005 , 17, 1440-1443	24	371
16	High-speed and high-current density C60 diodes. <i>Applied Physics Letters</i> , 2004 , 84, 4786-4788	3.4	51
15	Polymer electrical bistable device and memory cells. <i>Materials Research Society Symposia Proceedings</i> , 2004 , 830, 323		
14	Programmable polymer thin film and non-volatile memory device. <i>Nature Materials</i> , 2004 , 3, 918-22	27	774
13	On the mechanism of conductivity enhancement in poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) film through solvent treatment. <i>Polymer</i> , 2004 , 45, 8443-8450	3.9	983
12	Polymer Optoelectronic Devices with High-Conductivity Poly(3,4-Ethylenedioxythiophene) Anodes. Journal of Macromolecular Science - Pure and Applied Chemistry, 2004 , 41, 1497-1511	2.2	60
11	Nonvolatile electrical bistability of organic/metal-nanocluster/organic system. <i>Applied Physics Letters</i> , 2003 , 82, 1419-1421	3.4	322
10	Ultrahigh efficiency green polymer light-emitting diodes by nanoscale interface modification. <i>Applied Physics Letters</i> , 2003 , 83, 4695-4697	3.4	108
9	High-Performance, Flexible Polymer Light-Emitting Diodes Fabricated by a Continuous Polymer Coating Process. <i>Advanced Materials</i> , 2002 , 14, 915	24	64
8	Effect of nonionic surfactant additives on the electropolymerization of pyrrole in aqueous solutions. <i>Synthetic Metals</i> , 2000 , 113, 23-28	3.6	37
7	Effect of electrolyte solvent on the conductivity and structure of as-prepared polypyrrole films. <i>Polymer</i> , 1997 , 38, 1971-1976	3.9	62
6	Great improvement of polypyrrole films prepared electrochemically from aqueous solutions by adding nonaphenol polyethyleneoxy (10) ether. <i>Polymer</i> , 1997 , 38, 3997-3999	3.9	149
5	Two doping structures and structural anisotropy revealed by the mass loss and shrinkage of polypyrrole films on alkali treatment. <i>Synthetic Metals</i> , 1995 , 74, 49-53	3.6	41

4	Significant Enhancement in the Thermoelectric Properties of Ionogels through the Solid Network Engineering. <i>Advanced Functional Materials</i> ,2109772	15.6	8
3	15.8% efficiency binary all-small-molecule organic solar cells enabled by a selenophene substituted sematic liquid crystalline donor. <i>Energy and Environmental Science</i> ,	35.4	23
2	Enhancement of the Seebeck Coefficient of Organic Thermoelectric Materials via Energy Filtering of Charge Carriers. <i>CCS Chemistry</i> ,2415-2427	7.2	13
1	Giant Thermoelectric Properties of Ionogels with Cationic Doping. <i>Advanced Energy Materials</i> ,2200858	21.8	5