Zongjie Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2346956/publications.pdf

Version: 2024-02-01

		201674	110387	
70	4,797	27	64	
papers	citations	h-index	g-index	
70	70	70	7100	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	CITATIONS
1	Recent trends in gelatin methacryloyl nanocomposite hydrogels for tissue engineering. Journal of Biomedical Materials Research - Part A, 2022, 110, 708-724.	4.0	55
2	Efficient recovery of potent tumour-infiltrating lymphocytes through quantitative immunomagnetic cell sorting. Nature Biomedical Engineering, 2022, 6, 108-117.	22.5	31
3	PillarX: A Microfluidic Device to Profile Circulating Tumor Cell Clusters Based on Geometry, Deformability, and Epithelial State. Small, 2022, 18, e2106097.	10.0	17
4	A kinetic model for predicting imperfections in the bioink photopolymerization process during visible-light stereolithography printing. Additive Manufacturing, 2022, , 102808.	3.0	5
5	Optimized 3D Bioprinting Technology Based on Machine Learning: A Review of Recent Trends and Advances. Micromachines, 2022, 13, 363.	2.9	23
6	Nanoparticle Amplification Labeling for High-Performance Magnetic Cell Sorting. Nano Letters, 2022, 22, 4774-4783.	9.1	13
7	Tracking the expression of therapeutic protein targets in rare cells by antibody-mediated nanoparticle labelling and magnetic sorting. Nature Biomedical Engineering, 2021, 5, 41-52.	22.5	40
8	Designing Gelatin Methacryloyl (GelMA)â€Based Bioinks for Visible Light Stereolithographic 3D Biofabrication. Macromolecular Bioscience, 2021, 21, e2000317.	4.1	51
9	Polyether ether ketone surface modification with plasma and gelatin for enhancing cell attachment. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2021, 109, 622-629.	3.4	19
10	Development and in vitro evaluation of photocurable GelMA/PEGDA hybrid hydrogel for corneal stromal cells delivery. Materials Today Communications, 2021, 27, 102459.	1.9	9
11	A rapid near-patient detection system for SARS-CoV-2 using saliva. Scientific Reports, 2021, 11, 13378.	3.3	17
12	Tunable metacrylated hyaluronic acid-based hybrid bioinks for stereolithography 3D bioprinting. Biofabrication, 2021, 13, 044109.	7.1	26
13	Micro/nanotechnology-inspired rapid diagnosis of respiratory infectious diseases. Biomedical Engineering Letters, 2021, 11, 335-365.	4.1	5
14	Ultrasensitive Detection and Depletion of Rare Leukemic B Cells in T Cell Populations via Immunomagnetic Cell Ranking. Analytical Chemistry, 2021, 93, 2327-2335.	6.5	10
15	A microfluidic platform enables comprehensive gene expression profiling of mouse retinal stem cells. Lab on A Chip, 2021, 21, 4464-4476.	6.0	3
16	Phage-Based Profiling of Rare Single Cells Using Nanoparticle-Directed Capture. ACS Nano, 2021, 15, 19202-19210.	14.6	14
17	A liquid biopsy for detecting circulating mesothelial precursor cells: A new biomarker for diagnosis and prognosis in mesothelioma. EBioMedicine, 2020, 61, 103031.	6.1	7
18	Magnetic Ranking Cytometry: Profiling Rare Cells at the Single-Cell Level. Accounts of Chemical Research, 2020, 53, 1445-1457.	15.6	18

#	Article	IF	Citations
19	Biofabrication strategies for engineering heterogeneous artificial tissues. Additive Manufacturing, 2020, 36, 101459.	3.0	15
20	Fluorescent Droplet Cytometry for On-Cell Phenotype Tracking. Journal of the American Chemical Society, 2020, 142, 14805-14809.	13.7	15
21	Nanostructured Architectures Promote the Mesenchymal–Epithelial Transition for Invasive Cells. ACS Nano, 2020, 14, 5324-5336.	14.6	17
22	Ultrasensitive and rapid quantification of rare tumorigenic stem cells in hPSC-derived cardiomyocyte populations. Science Advances, 2020, 6, eaay7629.	10.3	28
23	Stereolithography 3D Bioprinting Method for Fabrication of Human Corneal Stroma Equivalent. Annals of Biomedical Engineering, 2020, 48, 1955-1970.	2.5	62
24	Antibacterial efficiency assessment of polymer-nanoparticle composites using a high-throughput microfluidic platform. Materials Science and Engineering C, 2020, 111, 110754.	7.3	13
25	Microfluidics-based fabrication of cell-laden microgels. Biomicrofluidics, 2020, 14, 021501.	2.4	40
26	High Throughput Screening of Cell Mechanical Response Using a Stretchable 3D Cellular Microarray Platform. Small, 2020, 16, e2000941.	10.0	16
27	Stereolithography 3D Bioprinting. Methods in Molecular Biology, 2020, 2140, 93-108.	0.9	61
28	Potentialâ€Responsive Surfaces for Manipulation of Cell Adhesion, Release, and Differentiation. Angewandte Chemie, 2019, 131, 14661-14665.	2.0	6
29	Potentialâ€Responsive Surfaces for Manipulation of Cell Adhesion, Release, and Differentiation. Angewandte Chemie - International Edition, 2019, 58, 14519-14523.	13.8	40
30	Peptide-Functionalized Nanostructured Microarchitectures Enable Rapid Mechanotransductive Differentiation. ACS Applied Materials & Samp; Interfaces, 2019, 11, 41030-41037.	8.0	10
31	Rapid and Inexpensive Fabrication of Multi-Depth Microfluidic Device using High-Resolution LCD Stereolithographic 3D Printing. Journal of Manufacturing and Materials Processing, 2019, 3, 26.	2.2	48
32	An integrated microfluidic flow-focusing platform for on-chip fabrication and filtration of cell-laden microgels. Lab on A Chip, 2019, 19, 1621-1632.	6.0	48
33	A Novel, Wellâ€Resolved Direct Laser Bioprinting System for Rapid Cell Encapsulation and Microwell Fabrication. Advanced Healthcare Materials, 2018, 7, e1701249.	7.6	42
34	Detection and Automation Technologies for the Mass Production of Droplet Biomicrofluidics. IEEE Reviews in Biomedical Engineering, 2018, 11, 260-274.	18.0	7
35	A High-Resolution Minimicroscope System for Wireless Real-Time Monitoring. IEEE Transactions on Biomedical Engineering, 2018, 65, 1524-1531.	4.2	11
36	Nanowire-Based Biosensors: From Growth to Applications. Micromachines, 2018, 9, 679.	2.9	99

#	Article	IF	CITATIONS
37	Three-Dimensional Nanostructured Architectures Enable Efficient Neural Differentiation of Mesenchymal Stem Cells via Mechanotransduction. Nano Letters, 2018, 18, 7188-7193.	9.1	60
38	Programmable Metal/Semiconductor Nanostructures for mRNA-Modulated Molecular Delivery. Nano Letters, 2018, 18, 6222-6228.	9.1	36
39	Visible Light Photoinitiation of Cell-Adhesive Gelatin Methacryloyl Hydrogels for Stereolithography 3D Bioprinting. ACS Applied Materials & Samp; Interfaces, 2018, 10, 26859-26869.	8.0	197
40	A designing method for bandâ€reject filter with high selectivity and tunable bandwidth. Microwave and Optical Technology Letters, 2017, 59, 1715-1720.	1.4	0
41	Rapid Fabrication of Multilayer Microfluidic Devices Using the Liquid Crystal Display-Based Stereolithography 3D Printing System. 3D Printing and Additive Manufacturing, 2017, 4, 156-164.	2.9	40
42	Visible light-based stereolithography bioprinting of cell-adhesive gelatin hydrogels., 2017, 2017, 1599-1602.		29
43	Comparative study of gelatin methacrylate hydrogels from different sources for biofabrication applications. Biofabrication, 2017, 9, 044101.	7.1	81
44	Adipose-Derived Stem Cells for Tissue Engineering and Regenerative Medicine Applications. Stem Cells International, 2016, 2016, 1-19.	2.5	221
45	Highâ€throughput investigation of endothelialâ€toâ€mesenchymal transformation (EndMT) with combinatorial cellular microarrays. Biotechnology and Bioengineering, 2016, 113, 1403-1412.	3.3	16
46	An automated system for high-throughput generation and optimization of microdroplets. Biomicrofluidics, 2016, 10, 054110.	2.4	12
47	Experimental and computational study of microfluidic flowâ€focusing generation of gelatin methacrylate hydrogel droplets. Journal of Applied Polymer Science, 2016, 133, .	2.6	24
48	An ultrafast hydrogel photocrosslinking method for direct laser bioprinting. RSC Advances, 2016, 6, 21099-21104.	3.6	75
49	Rapid fabrication of circular channel microfluidic flowâ€focusing devices for hydrogel droplet generation. Micro and Nano Letters, 2016, 11, 41-45.	1.3	21
50	Nanowire-Based Sensors for Biological and Medical Applications. IEEE Transactions on Nanobioscience, 2016, 15, 186-199.	3.3	60
51	3D bioprinting for engineering complex tissues. Biotechnology Advances, 2016, 34, 422-434.	11.7	1,240
52	Organ-on-a-Chip Platforms for Drug Screening and Tissue Engineering. Biosystems and Biorobotics, 2016, , 209-233.	0.3	15
53	The cleanroom-free rapid fabrication of a liquid conductivity sensor for surface water quality monitoring. Microsystem Technologies, 2016, 22, 2273-2278.	2.0	4
54	UWB microwave breast cancer detection with MRI-derived 3-D realistic numerical breast model. , 2015, ,		3

#	Article	IF	CITATIONS
55	A simple and high-resolution stereolithography-based 3D bioprinting system using visible light crosslinkable bioinks. Biofabrication, 2015, 7, 045009.	7.1	466
56	Embryoid body size-mediated differential endodermal and mesodermal differentiation using polyethylene glycol (PEG) microwell array. Macromolecular Research, 2015, 23, 245-255.	2.4	21
57	Development and Investigation of a Sweetness Sensor for Sugars -Effect of Lipids Sensors and Materials, 2015, , 1.	0.5	9
58	A progressive processing method for breast cancer detection via UWB based on an MRI-derived model. Chinese Physics B, 2014, 23, 074101.	1.4	11
59	Development of Anatomically Realistic Numerical Breast Phantoms Based on T1- and T2-Weighted MRIs for Microwave Breast Cancer Detection. IEEE Antennas and Wireless Propagation Letters, 2014, 13, 1757-1760.	4.0	16
60	An optical multi-sensing system for detection of cardiovascular toxicity. Biotechnology Letters, 2014, 36, 1089-1094.	2.2	3
61	Microfluidics-Assisted Fabrication of Gelatin-Silica Core–Shell Microgels for Injectable Tissue Constructs. Biomacromolecules, 2014, 15, 283-290.	5.4	133
62	Ultra-wideband microwave robust Capon beamforming imaging system for early breast cancer detection. Wuli Xuebao/Acta Physica Sinica, 2014, 63, 194102.	0.5	2
63	Novel lowpass filter with ultra-wide stopband using defected ground structure. , 2013, , .		O
64	Carbon-Nanotube-Embedded Hydrogel Sheets for Engineering Cardiac Constructs and Bioactuators. ACS Nano, 2013, 7, 2369-2380.	14.6	789
65	Sacrificial layer technique for axial force post assay of immature cardiomyocytes. Biomedical Microdevices, 2013, 15, 171-181.	2.8	35
66	The compact band-pass filter using L slot lines and enhanced air-bridge for the spurious responses suppression. , $2013, \ldots$		0
67	Novel ultra-wide bandpass filter with notched band using multimode resonator and open stubs. , 2013,		2
68	A COMPACT DUAL-BAND BAND-PASS FILTER WITH WIDE STOP-BAND USING TWO RESONATORS COMBINED BY VIA-HOLE. Progress in Electromagnetics Research C, 2013, 41, 81-95.	0.9	3
69	Directed endothelial cell morphogenesis in micropatterned gelatin methacrylate hydrogels. Biomaterials, 2012, 33, 9009-9018.	11.4	221
70	Spot Identification and Quality Control in Cell-Based Microarrays. ACS Combinatorial Science, 2012, 14, 471-477.	3.8	11